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Abstract

We present a parallel data structure for the discretization of partial differential
equations which is based on distributed point objects and which enables the
flexible, transparent, and efficient realization of conforming, nonconforming,
and mixed finite elements. This concepts is realized for elliptic, parabolic and
hyperbolic model problems, and sample applications are provided by a tutorial
complementing a lecture on scientific computing.

The corresponding open-source software is based on this parallel data struc-
ture, and it supports multilevel methods on nested meshes and 2D and 3D as
well as in space-time. Here, we present generic results on porous media applica-
tions including multilevel preconditioning and multilevel Monte Carlo methods
for uncertainty quantification.
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1. Introduction

The open-source parallel finite element software M++ is developed at the
Karlsruhe Institute of Technology within the last 15 years as a research code
for various applications in solid mechanics and electrodynamics as well as an
introduction to concepts in scientific computing with examples of porous media5

model problems.
We present here an overview on the parallel data structure specifying the

finite elements and the corresponding meshes, we define the parallel linear alge-
bra which builds the basis for the parallel preconditioning, and we introduce
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an integrated multilevel Monte Carlo framework. Furthermore, we present10

results for elliptic, hyperbolic and parabolic sample applications of the tu-
torial including tests for the multilevel Monte Carlo framework for general
finite element discretizations with stochastic parameters. The software and
lecture notes for the tutorial addressed in Sect. 5 can be downloaded from
http://www.math.kit.edu/ianm3/page/mplusplus including all presented ex-15

amples. It can be installed on Linux systems equipped with the parallel com-
munication software Open MPI. A detailed installation and starting guide is
provided on the git repository linked on the homepage above.

The general software architecture in this work is based on the distributed
point objects defined in Wieners (2004) and the parallel multilevel framework20

in Wieners (2010). Many concepts and achievements in DUNE (Bastian et al.
(1997, 2006, 2008)) and deal II (Bangerth et al. (2007); Arndt et al. (2017))
were relevant for the further development and improvement of M++.

2. Distributed point objects

The main concept of the parallel data structure in M++ is the unique identi-25

fication of geometric objects by their midpoints representing a position in space
x ∈ Rd with d ∈ {1, 2, 3} or in space-time (t, x) ∈ R1+d. The upcoming para-
graphs explain how this distributed point object data structure is exploited in
the mesh representation, its distribution on several processes and its refinement
to enable multilevel applications.30

Mesh representation. A mesh M = (V,K,F , E) is determined by a set of ver-
tices V, cells K, faces F , and edges E . Furthermore, every cell K ∈ K is
represented by its vertices VK ⊂ V, every edge E ∈ E by VE ⊂ V, and every
face F ∈ F by VF ⊂ V. This defines

EK =
{
E ∈ E : VE ⊂ VK

}
, FK =

{
F ∈ F : VF ⊂ VK

}
.

A mesh is admissible if

conv(VK ∩ convVK′) = convVK ∩ convVK′ for K,K ′ ∈ K .

Every cell K ∈ K is associated with a reference cell K̂, i.e., a reference interval
in d = 1, a reference triangle or quadrilateral in d = 2, a reference tetrahedron,
pyramid, prism, or hexahedron in d = 3 or a reference elements in space-time
built as tensor product of an interval in time and a reference element in space.

All reference cells K̂ are determined by vertices VK̂ , edges EK̂ , and faces FK̂35

represented by a vector of vertices ẑ1, . . . , ẑ|VK̂ | in Rd or Rd+1, edge numbers
(e1k, e2k)k=1,...,|EK̂ |, and face numbers (fjk)j=1,...,|VF̂k |,k=1,...,|FK̂ |.

The construction of the initial mesh is a sequential process. We assume
that the vertices VK are given by a vector (z1, . . . , z|VK |). Then the elements
K ∈ K are determined by an identification number to the associated reference
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element K̂ and the vector of vertex numbers (nk)k=1,...,|VK |, such that

VK = {znk : k = 1, . . . , |VK |} ,
VEk = {zne1k , zne2k } , k = 1, . . . , |EK̂ | ,
VFk = {znfjk : j = 1, . . . , |VF̂k |} , k = 1, . . . , |FK̂ | .

We assume that the numbering defines an injective orientation preserving map-
ping (which is affine linear for intervals, triangles, and tetrahedra)

ϕK : convVK̂ −→ convVK with ϕK(ẑk) = znk , k = 1, . . . , |VK | . (1)

Cells, edges, and faces are represented by its midpoints

zK =
1

|VK |
∑
z∈VK

z , zE =
1

|VE |
∑
z∈VE

z zF =
1

|VF |
∑
z∈VF

z ,

and we define the set Z = V ∪ ZK ∪ ZE ∪ ZF with

ZK =
{
zK : K ∈ K

}
, ZE =

{
zE : E ∈ E

}
, ZF =

{
zF : F ∈ F

}
.

Then, we provide mappings

ZK −→ V × · · · × V , zK 7−→ (zK,1, . . . , zK,|VK |) , (2a)

ZE −→ V × V , zE 7−→ (zE,1, zE,2) , (2b)

ZF −→ V × V , zF 7−→ (zK , zK′) , (2c)

where zK maps to the vector of vertices of K, and zE maps to the pair of edge
vertices. For interior faces F ∈ F , zF maps to the midpoints of the two cells
K and K ′ with F = VK ∩ VK′ , K 6= K ′. For boundary faces, zK′ = ∞ is set40

to a predefined exception point. The full information on the mesh is contained
in the data provided in the mappings (2). They are realized by hash maps in
order to provide O(1) access to the data.

Parallel mesh distribution. In the second step, the mesh will be distributed to
a set of processes P =

{
1, . . . , P}. The distribution is determined by a mapping

dest : ZK −→ P ,

which can be constructed by recursive coordinate bisection (RCB) using only
the coordinates ZK, or by recursive inertia bisection (RIB); an interface to the45

KaffPa graph partitioning software Sanders and Schulz (2011) is provided.
The distribution defines process sets

π : Z −→ 2P , π(z) =


{dest(zK)} z = zK ∈ ZK ,
{dest(zK) : E ∈ EK} z = zE ∈ ZE ,
{dest(zK) : F ∈ FK} z = zF ∈ ZF ,
{dest(zK) : z ∈ VK} z ∈ V .
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This yields a non-overlapping distribution of the cells and overlapping distribu-
tions of the vertices, the edges, and the faces. On process p ∈ P, the local mesh
Mp = (Vp,Kp,Fp, Ep) is given by

Vp =
{
z ∈ V : p ∈ π(z)

}
,

Kp =
{
K ∈ K : p ∈ π(zK)

}
,

Fp =
{
F ∈ F : p ∈ π(zF )

}
,

Ep =
{
E ∈ E : p ∈ π(zE)

}
.

For all geometric entities z ∈ Z, µ(z) = minπ(z) defines the corresponding
master process.

Parallel mesh refinement. For every reference cell K̂ a refinement rule

RK̂ =
{
K̂1, . . . , K̂|RK̂ |

}
is given by a vector of vertices for every refined cell K̂j . In case of uniform
refinement, we have |RK̂ | = 2d for cells in space and 21+d for space-time cells.50

Starting with the parallel mesh Mp
0 on level l = 0, this defines recursively

Mp
l = (Vpl ,K

p
l ,F

p
l , E

p
l ) for l = 1, . . . , L by constructing locally

Kpl =
{
Kj : cell with vertices VKj = φK

(
VK̂j

)
, K̂j ∈ RK̂ ,

K̂ reference cell to K ∈ Kpl−1

}
.

Note that for intervals, triangles, quadrilaterals and hexahedra one rule is suf-
ficient for uniform refinement, but in case of tetrahedra two rules are required
in order to achieve a shape regular sequence of meshes (Bastian et al. (1997)).

Then the refinement rules for the cells are used for the refinement of faces
and edges, and the corresponding process sets πl : Zl −→ 2P are constructed55

from πl−1. In particular this defines πl(zF ) for faces on process interfaces, and
the pair of neighboring cell midpoints (zK , zK′) to define (2c) is exchanged by
local communication.

Isoparametric mappings. In order to approximate smooth geometries, an op-
tional mapping can be provided which maps the reference geometry onto the60

smooth domain after every refinment step, see (Bayat et al., 2018, Sect. 3.2)
for an example. This can be combined with isoparametric quadratic Lagrange
elements.
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3. Parallel finite elements

A finite element discretization is determined by a triple (K̂, V̂ , V̂ ′) with65

reference cell K̂, ansatz space V̂ = span
{
ψ̂ẑ,j : ẑ ∈ Ẑ , j = 1, . . . , Nẑ

}
and

degrees of freedom V̂ ′, i.e., functionals ψ̂′ẑ,j defining the discrete interpolation

v̂ =
∑
〈ψ̂′ẑ,j , v̂〉ψ̂ẑ,j ∈ V̂ in the reference cell. All basis functions ψ̂ẑ,j are as-

sociated to a point in Ẑ, i.e, to the cell midpoint, an edge or face midpoint,
or a vertex. We assume that the corresponding degree of freedom ψ̂′ẑ,j can be70

evaluated by values in the cell, on the edge or face, or at the vertex. For K ∈ K,
this is transformed to (K,VK , V

′
K) by the mapping (1).

A cell K ∈ K is identified with an open subdomain K ⊂ Rd (or K ⊂ R1+d

in the space-time case) such that K̄ = conv(VK). This defines the open set
Dh =

⋃
K∈KK with skeleton ∂Dh =

⋃
K∈K ∂K. Let Pk(Dh) =

∏
K Pk(Dh) be75

the discontinuous space of piecewise polynomials of degree k.
The local finite element spaces in K are defined by its basis functions, i.e.,

VK = span
{
ψK,z,j : z ∈ Z ∩ K̄ , j = 1, . . . , Nz

}
,

which extends to the global finite element space in Dh by

Vh = span
{
ψz,j : ψz,j |K = ψK,z,j ∈ VK for all K ∈ K

}
.

Depending on the ansatz space, the finite element functions are continuous or
discontinuous on the skeleton ∂Dh.

Every local basis function ψK,z,j is associated to a point z ∈ Z ∩ K̄ with

• z = zK ∈ ZK, if suppψz,j ⊂ K̄,80

• z = zF ∈ ZF , if suppψz,j ⊂
⋃
F∈FK K̄,

• z = zE ∈ ZE , if suppψz,j ⊂
⋃
E∈EK K̄,

• z ∈ V, if suppψz,j ⊂
⋃
z∈VK K̄.

Within this framework, the following finite element spaces are realized.

Conforming linear and quadratic Lagrange elements V c
h ⊂ Pk(Dh)∩C0(D̄). We85

set Nz = 1 for z ∈ V and k = 1 for linear elements on intervals, triangles,
and tetrahedra, bilinear elements on quadrilaterals, and trilinear elements on
hexahedra; for the quadratic family we have Nz = 1 for z ∈ V ∪ ZE and k = 2.
The degrees of freedom are point evaluations.

Raviart-Thomas elements Wh ⊂ P1(Dh;Rd) ∩ H(div, D). We set Nz = 1 for90

z ∈ ZF . The degrees of freedom are face averages of the normal flux on the
face. Note that this requires an orientation on the faces provided by (2c).

Nedelec elements Xh ⊂ P1(Dh;R3)∩H(curl, D). We set Nz = 1 for z ∈ ZE , and
the degrees of freedom are integrals along the edges in the direction provided
by (2b).95
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Crouziex-Raviart elements V nc
h ⊂ Pk(Dh). We set Nz = 1 for z ∈ ZF , and the

degrees of freedom are face averages.

Discontinuous Galerkin elements Qk,h = Pk(Dh). We set Nz = dim(QK) for
z ∈ ZK and the local spaces QK = Pk(K); the degrees of freedom are point
evaluations in K̄. This includes finite volume methods (k = 0) and adaptivity100

with local polynomial degrees kK depending on K ∈ K.

Enriched Galerkin elements V eG
h = V c

h +Q0,h = P1(Dh)∩C0(D̄) +P0(Dh) (Lee
et al. (2016)). Here, we use Nz = 1 for z ∈ V ∪ ZZ extending the conforming
Lagrange elements by discontinuous finite volumes.

Weakly conforming Galerkin elements V wc
h . We select a discrete discontinuous

space Qk,h = Pk(Dh;Rd), and weak continuity is achieved by a Lagrange mul-
tiplier space Mk−1,h =

∏
F∈F Pk−1(F ;Rd) defining

V wc
h =

{
vh ∈ Qk,h :

(
[v]F , λh

)
F

= 0 for all F ⊂ D ,λh ∈Mk−1,h

}
,

where [v]F = v|K′ − v|K is the jump term at interior faces. In a preprocessing105

step, hybrid skeleton reduction results into a positive definite Schur complement
system for the Lagrange multipliers (Wieners (2016)). For applications in solid
mechanics, see Bayat et al. (2018).

Discontinuous Petrov-Galerkin elements. Here, a general linear first-order sys-
tem Lu = f is formulated in weak form

(u, L∗w)Dh + 〈û, tr∗ w〉∂Dh = (f, w)D

by introducing unknowns û = tru for the trace values on the skeleton, see
Demkowicz and Gopalakrishnan (2014). The approximation with discontinuous110

finite element spaces for u and w and a finite element space on the skeleton
for the approximation of conforming trace values û yields a minimal residual
method which is robust also for several non-elliptic applications. The realization
in M++ together with multigrid preconditioning is discussed in Wieners and
Wohlmuth (2014) and the application of a space-time discretization for acoustic115

waves is presented in Ernesti and Wieners (2019).

Space-time discontinuous Galerkin elements. A discontinuous Galerkin method
in space and time in Pk(Dh;Rm) is realized for general first-order linear sym-
metric Friedrichs systems (Dörfler et al. (2016)), where Dh =

⋃
K ⊂ R1+d is a

decomposition into space-time cells.120
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4. Parallel linear algebra

A finite element function v =
∑
z,j vz,jψz,j ∈ Vh is determined by its coef-

ficient vector v ∈ V = RN with N =
∑
z,j Nz,j . In parallel, this is represented

by the embedding

e : V −→ V P =
∏
p∈P

V p

into the overlapping space V P with V p = RNp and Np =
∑
z∈Zp

∑
j Nz,j .

A parallel vector vP = (vp)p∈P is consistent, if vP ∈ e(V ), i.e.,

vpz = vqz , p, q ∈ π(z) ,

A linear finite element solution uh ∈ Vh solves the linear equation

Ahuh = bh

with linear operator Ah : Vh −→ V ′h and right-hand side bh ∈ V ′h. In parallel,
the assembling is of the form

〈Ahψz,j , φy,k〉 =
∑
p∈P

aph(ψz,j , φy,k) , 〈bh, φy,k〉 =
∑
p∈P

`ph(φy,k) .

This is represented in parallel additively by AP =
(
Ap
)
p∈P and bP =

(
bp
)
p∈P

with

Apyz =
(
aph(ψz,j , φy,k)

)
j,k
∈ RN

p
y×N

p
z , bpz =

(
`ph(ψz,j)

)
j
∈ RN

p
z

defining AP : V P −→ (V P)′ and bP ∈ (V P)′. Note that the inner products(
APuP

)
· vP and bP · vP are well-defined for consistent vectors uP and vP

independently of the additive decomposition and the parallel distribution of AP

and bP .125

For iterative solvers, we construct preconditioners BP : (V P)′ −→ V P which
map additive vectors to consistent vectors. Note that this requires communi-
cation for the construction and for the application of parallel preconditioners;
e.g., for the construction of a Jacobi preconditioner the diagonal matrix entries

Bzz =
(∑

p∈π(z)A
p
zz

)−1

are collected from the processor set π(z), and for di-130

rect solvers all additive entries have to be collected, see Maurer and Wieners
(2011, 2016) for details.

This extends to multilevel preconditioning using V 0, . . . , V L on a sequence of
meshes by defining prolongation operators IPl : V Pl−1 −→ V Pl for consistent vec-

tors and corresponding restriction operators RPl : (V Pl+1)′ −→ (V Pl ) for additive135

vectors; in M++ these operations are assembled depending on the discretization,
e.g., the restriction is the transposed matrix in case of Lagrange elements and
the L2 projection for discontinuous Petrov-Galerkin methods in Dörfler et al.
(2016). The full parallel multilevel framework is analyzed in Wieners (2010).
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5. A tutorial for scientific computing140

Complemented to a lecture on scientific computing we introduce a tutorial,
where main features of finite element discretizations for elliptic, hyperbolic, and
parabolic equations are evaluated by a sample application in porous media.

5.1. Elliptic model equation: Darcy flow in porous media

Let D ⊂ Rd be a domain with boundary ∂D = ΓD ∪ ΓN. For a given145

permeability tensor κ : D̄ −→ Rd×dsym in the Darcy model, the flux q = −κ∇u is

determined from the pressure head u : D̄ −→ R by the volume balance div q = 0
and the boundary conditions u = uD on ΓD and −q · n = gN on ΓN.

For this model we test different finite element approximations. In the first
test this is approximated with Lagrange elements: find uh ∈ V ch (uD) solving∫

D

κ∇uh · ∇φh dx =

∫
ΓN

gNφh da , φh ∈ V ch (0) .

Therefore, we define the affine linear subspace

V ch (uD) =
{
vh ∈ Vh : vh(z) = uD(z) for z ∈ V ∩ ΓD

}
with respect to essential boundary conditions and the corresponding linear sub-
space V ch (0) for the test functions.150

The approximation (qh, uh) ∈ Wh(−gN) × Q0,h with mixed finite elements
is given by the saddle point problem∫

D

κ−1qh · ψh dx−
∫
D

uh divψh dx = −
∫

ΓD

uDψh · nda ,∫
D

div qhφh dx = 0 , (ψh, φh) ∈Wh(0)×Q0,h

Here, the Neumann data are essential boundary conditions included in

Wh(−gN ) =
{
wh ∈Wh :

∫
F

wh · nda = −
∫
F

gN da for F ∈ F , zF ∈ ΓN

}
.

Introducing a Lagrange multiplier spaceMh =
∏
F P0(F ) for the element bound-

ary flux and the discontinuous space WK =
∏
KWK , the mixed approximation

can be computed by (qh, uh, λh) ∈WK×Q0,h×Mh(−uD) solving the extended
saddle point problem∫

K

κ−1qh · ψh dx−
∫
K

uh divψh dx =

∫
∂K

λhψK · nda , ψK ∈WK ,∫
K

div qh dx = 0 , K ∈ K ,∑
K

∫
∂K

qh · nµh da = −
∫

ΓN

gN µh da , µh ∈Mh(0)
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with M(−uD) =
{
µh ∈Mh :

∫
F
µh da = −

∫
F
uD da , F ∈ F , zF ∈ ΓD

}
.

Now, essential Dirichlet boundary conditions are included in the Lagrange
multiplier space. Static condensation allows to reduce the global problem to
a symmetric positive definite system for the Lagrange multiplier (Brezzi and
Fortin, 1991, Thm. V.1.1); then, (qh, uh) can be reconstructed by a local post-155

processing step.
The Darcy equation can also be approximated by the discontinuous Galerkin

method with symmetric interior penalty parameter γF = O(k2/h) depending
on the polynomial degree k and the mesh size h

adG
h (uh, φh) =

∑
K∈K

∫
K

κ∇uh · ∇φh dx+
∑

F∈Fh\ΓN

γF

∫
F

[uh]F · [φh]F da

−
∑

F∈F\ΓN

∫
F

(
{κ∇uh}F · [φh]F + [uh]F · {κ∇φh}F

)
da ,

bdG
h (φh) =

∫
ΓN

gNφh da+
∑

F∈F∩ΓD

γF

∫
F

uDφh da

−
∑

F∈Fh∩ΓD

∫
F

uDκ∇φh · nda , uh, φh ∈ Qk,h

using the face average {φh}F = 1
2 (φh|K +φh|K′) and the jump term on interior

faces [φh]F = nKφK +nK′φK′ for F ∈ F with VF = VK ∩VK′ . For more details
see Arnold et al. (2002).

Finally, this example is tested with the weakly conforming method which160

is realized also with interelement Lagrange multipliers and static condensation,
see Bayat et al. (2018).

Figure 1: Streamline visualization of the flux
qh = ∇uh solving the Darcy equation with
mixed finite element and mesh size h = 2−10.

Numerical results for the differ-
ent discretizations are presented for
a test configuration D ⊂ (0, 1)2 with
homogeneous material κ ≡ 1 and
15 impermeable inclusions, cf. Fig. 1.
Here, we impose Dirichlet boundary
conditions uD(x) = 0 on the bottom
for x ∈ ΓD = [0, 1] × {0}, Neumann
boundary conditions gN(x) = −1 for
x ∈ (0, 1) × {1}, and homogeneous
Neumann boundary conditions on
the remaining boundary. The con-
vergence is tested by the evaluation
of the goal functional

G(u) =

∫
ΓG

q · nda

evaluating the outflow along the
boundary part ΓG = (0.25, 0.5) × {0}. The results in Tab. 1 indicate clearly,
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that the mixed formulation is more efficient than Lagrange elements or low-165

order discontinuous Galerkin elements. This may be explained by the cell-wise
flux preserving property of mixed finite elements. Nevertheless, although the
solution is not smooth due to the singularities at the re-entrant corners, higher-
order discontinuous Galerkin elements are more precise on coarser discretiza-
tions. Comparible accuracy is obtained with the weakly conforming method170

where the size of the global linear system is reduced substantially to the static
condensation procedure.

|K| 478 1912 7648 30592 122368 489472 1957888

dimV c
h 289 1072 4072 15808 62224 246832 983152

G(uh) 0.25660 0.25360 0.25239 0.25162 0.25117 0.25094 0.25082

dimMh 783 3000 11736 46416 184608 736320 2941056
G(uh) 0.24656 0.24940 0.25041 0.25062 0.25068 0.25069 0.25070

dimQ1,h 1434 5736 22944 91776 367104 1468416 5873664
G(uh) 0.25964 0.25428 0.25232 0.25151 0.25111 0.25090 0.25080

dimQ2,h 2868 11472 45888 183552 734208 2936832
G(uh) 0.24776 0.25108 0.25080 0.25073 0.25071 0.25070

dimQ3,h 4780 19120 76480 305920 1223680 4894720
G(uh) 0.25235 0.25066 0.25071 0.25071 0.25070 0.25070

dimM1,h 1334 5536 22544 90976 365504 1465216
G(uh) 0.25205 0.25096 0.25074 0.25071 0.25070 0.25070

Table 1: Numerical approximation of the goal functional G for bilinear Lagrange elements,
mixed elements in the hybrid formulation, discontinuous Galerkin elements for k = 1, 2, 3, and
the weakly conforming method for k = 2.

5.2. Hyperbolic model equation: linear transport

Depending on the Darcy flux q, we consider a density ρ : [0, T ]×D −→ R of
some pollution which is transported by

∂tρ+ div(ρq) = 0 in (0, T )×D , ρ(0) = ρ0 in D ,

with inflow boundary condition

ρ = ρin on (0, T )× Γin with Γin = {x ∈ ∂D : q · n < 0} .

Let Ψ(ρ) = ρq be the corresponding flux function, and let Ψ∗ be the numerical
flux, defined by

Ψ∗K,F (ρh) = Ψ(ρK) if q · nK > 0 , Ψ∗K,F (ρh) = Ψ(ρK′) if q · nK < 0

on inner faces F = ∂K ∩ ∂K ′, and Ψ∗K,F (ρh) = 0 for F ⊂ ∂D \ Γin.
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We define the discrete operators Mh, Ah and the right-hand side bh by

(Mhρh, φh)D = (ρh, φh)D ,

(Ahρh, φh)D =
(∑

K

−(div Ψ(ρh), φh)K

+
∑

F⊂∂K\Γin

(
(Ψ(ρK)−Ψ∗K,F (ρh)) · nK , φh

)
F

)
+ (Ψ(ρh) · n, φh)Γin

,

(bh, φh)D = −(Ψ(ρin) · n, φh)Γin
, ρh, φh ∈ Qh ,

cf. (Di Pietro and Ern, 2011, Section 2 and 3) for more details. This yields the175

discrete problem in space Mh∂tρh = Ahρh + bh. Here, we test different time
steping methods for the case bh = 0, cf. Hochbruck et al. (2015).

The semidiscrete solution ρh(tn+1) = exp(MtM−1
h Ah)ρh(tn) in every time

step tn = nMt is approximated by the

• classical explicit Runge-Kutta method

ρn+1
h = ρnh + MtM−1

h Ah

·
(
ρnh +

1

2
MtM−1

h Ah
(
ρn +

1

3
MtM−1

h Ah(ρn +
1

4
MtM−1

h Ah ρ
n
h)
))

;

• implicit mid point rule

ρn+1
h = ρnh + Mt

(
Mh −

Mt
2
Ah
)−1

Ah ρ
n
h;

• polynomial Krylov method

ρn+1
h = Vm exp(MtHm)V >mMhρ

n
h

with Hm = V >mAhVm ∈ Rm×m, m � N , where Vm = [v1, . . . , vm] is an
Mh-orthogonal basis of the Krylov space

span
{
ρnh,M

−1
h Ahρ

n
h, . . . , (M

−1
h Ah)m−1ρnh

}
,

i.e., VmMhV
>
m = Im.180

Figure 2: The transport of the initial distribution ρ0 by the flow field qh computed in Fig. 1
at t = 0.25, 0.5, 0.75 evaluated with the exponential time integrator, quadratic dG elements
in space, and mesh size h = 2−9.
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The results for a sample configuration at selected time steps are presented in
Fig. 2. The results in Tab. 2 show approximately quadratic convergence in time
for the implicit midpoint rule. In this test, the results are evaluated by a goal
functional describing the remaining pollution in the reservoir D at t = 1, and
by extrapolation one can estimate that the error on finest mesh with h = 2−9

185

is below 1 %.∫
D
ρ(1) dx Mt = 0.004 Mt = 0.002 Mt = 0.001 Mt = 0.0005

h = 2−7 1.79606 1.83057 1.83183 1.83215
0.03451 0.00126 0.00032

h = 2−8 1.60992 1.63899 1.64146 1.64171
0.02907 0.00247 0.00025

h = 2−9 1.61380 1.63235 1.63752 1.63785
0.01855 0.00517 0.00033

Table 2: Numerical approximation of the total pollution
∫
D ρ(1, x) dx, evaluated with

quadratic discontinuous Galerkin elements on different mesh levels and with implicit mid-
point rule in time, where the linear problem in every time step is solved approximately by a
GMRES iteration with block-Jacobi preconditioning.

5.3. Parabolic model equation: combining diffusion, convection, and reaction

For the Darcy flux q, a diffusion tensor κc : D −→ Rd×d and a nonlinear
reaction rate r : (0, T ) × D × R −→ R we determine the concentration of a
substance c : [0, T ]×D −→ R by

∂tc− div(κc∇c− cq) = r(c) in (0, T )×D , c(0) = c0 in D

subject to the boundary conditions

c = cD on [0, T ]× ΓD ,

κc∇c · n = gN on [0, T ]× ΓN ,

κc∇c · n+ αc = gR on [0, T ]× ΓR .

We define the bilinear form a(·, ·) and linear form b(·) by

a(ch, φh) =

∫
D

(
κc∇ch · ∇φh + q · ∇chφh

)
dx+

∫
ΓR

αchφh da ,

b(φh) =

∫
ΓN

gNφh da+

∫
ΓR

gRφh da .

Using an implicit Euler method, the approximation cnh ∈ Vh(cD(tn)) for step n
at time tn is determined by the nonlinear problem

1

Mt

(
cnh − cn−1

h , φh
)
D

+ a
(
cnh, φh

)
D

=
(
r(cnh), φh

)
D

+ b(φh) , φh ∈ Vh(0) .
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For the stream-line diffusion method, we use with δK = O(h)

asd
h (ch, φh) = a(ch, φh)

+
∑
K

δK

∫
K

(
− div(κc∇ch) + q · ∇ch − r′(c̃h)ch

)
q · ∇φ dx ,

bsdh (φh) = b(φh) +
∑
K

δK

∫
K

f q · ∇φ dx

for the linearization at c̃h, which yields for an appropriate choice of δK and
r′ ≤ 0 a positive definite bilinear form also in case of small diffusion, see, e.g.,
(Knabner and Angermann, 2004, Section 9.2). Alternatively, this equation can190

be approximated by the discontinuous Galerkin method combining the symmet-
ric interior penalty formulation for the Darcy equation with the upwind flux for
the transport term.

Figure 3: The diffusive and reactive transport of the initial distribution c0 by the flow field
qh computed in Fig. 1: the results after 100 time steps at t = 0.5 for the stream-line diffusion
method (linear elements and mesh size h = 2−8) are compared with the discontinuous Galerkin
method (quadratic elements and mesh size h = 2−7).

We consider an example with the initial value as in Fig. 2 for the solution of
the transport equation ρ. The result for the solution of the diffusion-convection-195

reaction equation c with κc = 0.001 and r(c) = c − c2 is shown in Fig. 3.
Although the diffusion is very small, a clear difference in the evolution of ρ
and c can be observed. Both methods, the stream-line diffusion method and the
discontinuous Galerkin method, are stable and convergent for small diffusion.
Further tests in this tutorial show that for the stream-line diffusion method the200

stiffness matrix is more sparse and the low order method is more accurate than
the discontinuous Galerkin method with linear elements, but the higher order
method is more efficient also in this example, where nearly the same result as
for the low-order method is obtained on a coarser mesh.
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6. Multilevel Monte Carlo finite element method applications with205

random coefficients

We realized within M++ a general framework for multilevel Monte Carlo
(MLMC) methods. Our implementation is based on the setting reviewed in Giles
(2015). Here, we demonstrate how this applies to the elliptic model problem in
the case of a stochastically modeled permeability κ : Ω × D −→ Rd×dsym and to210

the linear transport equation with a stochastic Darcy flux q : Ω×D −→ Rd on
a suitable probability space (Ω,FΩ,P).

We assume that the permeability tensor is isotropic and only depending on
the scalar value κ0(ω, x) > 0. We choose a log-normal ansatz

κ0(ω, x) = exp
(
g(ω, x)

)
, (3)

where g : Ω× D̄ → R is a Gaussian field with covariance kernel characterized by

C(x, y) = σ2 exp(−‖x− y‖s2/λs) (4)

depending on variance σ2, correlation length λ, and a smoothing parameter s.
For efficient sampling of these log-normal fields, we use the technique intro-

duced in Dietrich and Newsam (1997) using the special structure of covariance215

matrices with circulant embeddings and fast Fourier transforms. To draw sam-
ples from the stochastic flux q, we solve the elliptic Darcy system with samples
of the log-normal field.

It is shown in Charrier et al. (2013); Teckentrup et al. (2013) that the stochas-
tic fields as above yield uniform regularity estimates for the elliptic model prob-
lem, thus for some 0 < t ≤ 1, it is shown that

‖u(ω, ·)‖Hr+1(D) .
κmax(ω)‖κ(ω, ·)‖2

Ct(D)

κmin(ω)4(
‖f(ω, ·)‖Ht−1(D) + ‖κ(ω, ·)‖Ct(D)‖uD(ω, ·)‖

Ht+
1
2 (ΓD)

)
(5)

for almost all ω ∈ Ω and for all 0 < r < t. Therefore, we can also retrieve
convergence results for the finite element solution uh(ω) ∈ V ch (uD). Further220

applications related to the transport equation can be found for example in Barth
and Stein (2019) or Kumar et al. (2018).

Monte Carlo method. For the elliptic model problem, we are interested in the
expectation value of some given goal functional G of the pressure head u solving
the Darcy equation, thus we search for E[Q(ω)] = E[G(u(ω))]. Similarly, for225

the linear transport equation we are looking for an efficient way to compute
E[Q(ω)] = E[H(ρ(ω))], where H is some other given functional to the density ρ.

Since, we compute u(ω, ·) and ρ(ω, ·, ·) with finite element methods for some
sample ω ∈ Ω, we only retrieve an approximation of the functional, i.e., Qh(ω) =
G(uh(ω, ·)) and Qh(ω) = H(ρh(ω, ·, ·)), respectively. From now on, we want to230

use a more general setting applicable to both problems and therefore restrict
ourself to the description with Qh.
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Firstly, we assume that the used approximation to compute Qh is convergent
with the exponent α > 0, i.e.,

‖E[Qh −Q]‖ . hα , ‖E[Qh −Q]‖ . N−α/d , N = dim(Vh) (6)

and that the cost to compute one sample of the solution uh(ωi) and thus the
functional Qh(ωi) can be bounded by

C(Qh(ωi)) . h−γ , C(Qh(ωi)) . Nγ/d (7)

with some γ > 0. For now, we want to assume that the provided solvers in
M++ are optimal with γ ≈ d and γ ≈ d+ 1 for the time dependent case.

The Monte Carlo (MC) method estimates the expectation E[Qh] by the mean
of M independent and identically distributed samples

Q̂MC
h,M =

1

M

M∑
i=1

Qh(ωi) .

The root mean square error (RMSE) of this approach

e(Q̂h) =
(
E
[(
Q̂MC
h,M − E[Q]

)2]) 1
2

can be decomposed into

e(Q̂MC
h,M )2 = M−1V[Qh]︸ ︷︷ ︸

estimator error

+ (E[Qh −Q])
2︸ ︷︷ ︸

FEM error

,

where V[Qh] = E[(Qh−E[Qh])2] denotes the variance of the random variableQh.
Thus, a sufficient condition to achieve a RMSE of accuracy ε > 0 is that the

estimator error and the FEM error are less or equal than ε2

2 , which gives us a cri-
teria for an optimal choice of M and an optimal choice for the mesh parameter h.
The obvious estimate for the total computational cost C(Q̂MC

h,M ) . M ·Nγ and

a sufficiently large number of samples M = O(ε−2) gives us the computational
cost to achieve a RMSE of O(ε)

Cε(Q̂MC
h,M ) . ε−2− γα

depending on the regularity of the problem.235

Multilevel Monte Carlo method. Extending the above to a sequence of meshes
with the mesh sizes h0 > h1 > · · · > hL using the expansion

E[Qh] = E[Qh0
] +

L∑
l=1

E[Qhl −Qhl−1
] =

L∑
l=0

E[Yl]

15



and estimating every expectation of Yl individually, leads to the MLMC method.
By evaluating

ŶMC
h,Ml

=
1

Ml

Ml∑
i=1

(
Qhl(ωi)−Qhl−1

(ωi)
)
, ŶMC

h,M0
=

1

M0

M0∑
i=1

Qh0
(ωi)

we obtain for the overall estimation

Q̂MLMC
h,{Ml}Ll=0

=

L∑
l=0

ŶMC
h,Ml

=

L∑
l=0

1

Ml

Ml∑
i=1

Yl(ωi) ,

where {Ml}Ll=0 denotes a sequence for the number of samples on each level. It
is important to note that every Yl(ωi) = Qhl(ωi) − Qhl−1

(ωi) uses the same
sample ωi ∈ Ω for the two different meshes (cf. Fig. 4 for a visual illustration).

Since all the expectation values E[Yl] are estimated independently, the vari-
ance of the MLMC method can be quantified by

V
[
Q̂MLMC
h,{Ml}Ll=0

]
=

L∑
l=0

1

Ml
V[Yl]

and with this, we obtain for the RMSE of the MLMC method

e(Q̂MLMC
h,{Ml}Ll=0

)2 = E
[
(Q̂MLMC

h,{Ml}Ll=0
− E[Q])2

]
=

L∑
l=0

1

Ml
V[Yl]︸ ︷︷ ︸

estimator error

+ (E[Qh −Q])
2︸ ︷︷ ︸

FEM error

.

If we assume that the variance of the difference Qhl −Qhl−1
decays with

‖V[Qhl −Qhl−1
]‖ . hβ , ‖V[Qhl −Qhl−1

]‖ . N−β/d (8)

for some β > 0 and combine this together with the assumptions (6) and (7), it
can be shown that for all ε ∈ (0, e) a number of levels L ≥ 0 and a sequence
{Ml}Ll=0 exists such that

e(Q̂MLMC
h,{Ml}Ll=0

)2 = E
[(
Q̂MLMC
h,{Ml}Ll=0

− E[Q]
)2]

< ε2

and that the overall cost is bounded by

Cε(Q̂MLMC
h,{Ml}Ll=0

) .


ε−2 if β > γ ,

ε−2 log(ε)2 if β = γ ,

ε−2−(γ−β)/α if β < γ .

To find this sequence, the optimal number of samples on each level can be
estimated with

Ml ≈ 2ε−2

√
V[Yl]

Cl

(
L∑
l=0

√
V[Yl]Cl

)
, (9)
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Moreover, if |E[Qhl −Qhl−1
]| . hαl , weak convergence can be tested by

|E[QhL −QhL−1
]| < (2α − 1)

ε√
2
, (10)

see Giles (2008) and Giles (2015) for more details. This results in the following
algorithm.240

Algorithm 1 Multilevel Monte Carlo method.

1: Choose hinitl=0, h
init
l=1 . . . , h

init
l=L and M init

l=0 ,M
init
l=1 . . . ,M

init
l=L

2: Set {MMl = M init
l }Ll=0 and {Ml = 0}Ll=0

3: while MMl > 0 on any level do
4: for levels with MMl > 0 do
5: Yl, Cl ← MonteCarlo(MMl, l)
6: Update Cl, |E[Yl]| and V[Yl]
7: Set Ml ←Ml + MMl, MMl = 0
8: end for
9: Estimate α, β, γ with (6), (7) and (8)

10: Estimate {Mopt
l }Ll=0 with (9)

11: Update {MMl}Ll=0 = {Mopt
l −Ml}Ll=0

12: Test for weak convergence with (10)
13: if not converged then
14: Set L← L+ 1 and update {MMl}Ll=0
15: end if

16: end while

The realization in M++. To integrate the MLMC method, we exploit the mul-
tilevel structure provided by M++ by identifying each mesh with a Monte Carlo
object and a stochastic field sampler. The Monte Carlo object computes the fi-
nite element solutions of the drawn sample depending on the chosen problem and
discretization. Furthermore, the Monte Carlo objects hold all statistics about245

the solution on their corresponding level, thus they know Cl, |E[Qhl ]|, V[Qhl ],
|E[Yl]| and V[Yl]. The implemented MLMC method is then simply realized by
navigating through the Monte Carlo objects, retrieving their data and asking
for further finite element solutions if required. This way the MLMC method
can estimate α, β and γ by fitting the log2 of the data in a linear function and250

estimating the optimal number of samples with (9) during runtime.
In this framework, it is very easy to realize MLMC methods for a variety of

problems. Only a new Monte Carlo class overloading the abstract Monte Carlo
class has to implemented. This new Monte Carlo class has to be equipped with
the problem and discretization specific assemble routines and solvers. Since255

M++ already provides numerous applications, only slight adaptions of the cor-
responding code have to be made in order to fit them into the this MLMC
framework. This way we exploit the non-intrusiveness of the MLMC method
in our software, expanding it to an uncertainty quantification (UQ) tool with a
strength for problems with randomly distributed coefficients.260
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Figure 4: Samples on level 3, 4 and 5. Every image stands for one sample of the permeability
and of the corresponding flux as streamlines. The transparent images in the background stand
for additional samples on the particular level. This figure demonstrates how all samples on
the different levels are combined in the MLMC algorithm.

To provide a more visual understanding of the multilevel structure of the
algorithm and how the samples are combined we refer to Fig. 4. In this figure
we see the permeability in the background and the computed flux of the finite
element solution as streamlines for different samples of the Darcy problem on
different levels. The figure visualizes how the samples of the lowest level, in this265

case level 3, and the samples from the other levels are combined with each other
in the MLMC algorithm. The images in the lower row correspond to the images
in the upper row by showing the same sample on a lower level, thus the column
in the middle and on the right mimic the quantity Yl = Qhl −Qhl−1

.

Elliptic experiments with a stochastic permeability. We present sample compu-270

tations to demonstrate the functionality of the framework and the algorithm,
and we investigate different discretizations combined with MLMC methods.

Following Giles (2008) and Cliffe et al. (2011), we evaluate the method by
first investigating the assumptions (6), (7) and (8) numerically and then testing
the performance of the MLMC method for various error bounds ε. All elliptic275

examples follow the Darcy model in Sect. 5.1 with the log-normal distributed
permeability (3). The computations are performed on a compute cluster with
32 parallel cores.

We start with investigating the role of the covariance function (4) on the con-
vergence of the method using linear Lagrange elements and the L2 norm as goal280

functional. We define (4) with σ = 1.0, λ = 0.15 and s = 1.0 as our reference
covariance function and compare it with other parameter configurations. The
numerical results are shown in Fig. 5, where on the left column we investigate
the weak convergence of the finite element method, thus the assumption (6), and
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on the right column the decay of the variance corresponding to assumption (8).285

The dashed lines show the progression of E[Qhl −Qhl−1
] and V[Qhl −Qhl−1

] in
a logarithmic scale, whereas the solid lines show E[Qhl ] and V[Qhl ]. All theses
statistical moments where estimated with 500 samples.

Figure 5: Convergence test for various parameters for the log-normal distribution of the perme-
ability s ∈ {1.0, 1.6, 1.8} (first row), λ = {0.05, 0.1, 0.15} (second row) and σ ∈ {1.0, 1.5, 2.0}
(third row). The solid lines describe E[Qhl ] and V[Qhl ], and the dashed lines describe
E[Qhl −Qhl−1

] and V[Qhl −Qhl−1
].
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First, we discuss the effect of increasing the smoothing parameter for the
stochastic field from s = 1.0 to s = 1.4 and then to s = 1.8, cf. the first row in290

Fig. 5. We clearly observe the increased convergence rates for the expectation
value and the variance, as the stochastic fields are getting smoothed by s. This
is due to the increased Hölder continuity in the stochastic field as it is described
by the estimate (5). This matches results reported in Teckentrup et al. (2013);
Charrier et al. (2013) which basically state that the increased regularity in the295

stochastic field directly transmits to more regularity of the solution and thus to
faster convergence of the finite element approximation.

Next, we consider the convergence results with respect to different correlation
lengths λ. This is of particular interest since the finite element discretization has
to resolve the smallest structure in the permeability tensor in order to produce300

meaningful results. Our lowest mesh resolution on level 3 is h0 = 0.15, and
thus by undercutting the coarsest mesh resolution by the correlation lengths
λ ∈ {0.05, 0.1}, we expect the finite element method to perform worse on the
lower levels. Indeed, the convergence plots for the expectation value in the
second row are flattening the smaller the correlation length is chosen and the305

coarser the mesh width h gets. Thus, if we want to use the MLMC method
for even coarser levels or smaller correlation lengths, assumption (6) is violated.
Furthermore, we loose the variance reduction property of the MLMC method,
which is seen in the left plot by the decreasing distance of the dashed and the
solid lines, indicating that the variance of a standard MC method is approaching310

the variance of the MLMC method.
This phenomena can also be observed for σ which models the variance in

the covariance function. By increasing σ, the values of the stochastic field are
getting stretched, leading to a decreasing condition of the problems, namely
the constant in (5) is increasing with increasing σ. By further increase of σ,315

we observe that the variance of Qhl − Qhl−1
and of Qhl are of the same size,

and thus, the variance reduction property of the MLMC method does not hold
anymore which leads to much worse convergence.

Complementing these results, we now investigate the performance of the
MLMC method on problems with correlation lengths which can be resolved320

by the coarsest mesh and on configurations which provide enough regularity
in order to reach a certain error bound with a reasonable amount of samples
and levels. Therefore we choose λ = 0.15, σ = 1.0, s = 1.4 and s = 1.8,
respectively. The results of the MLMC method applied on these problems are
presented in Fig. 6. We first discuss the plots on the left-hand side of Fig. 6325

which show the required number of samples on each level for different error
bounds ε. We observe that the algorithm demanded more levels and more
samples in order to reach a smaller error bound. Furthermore, we can see that
the better conditioned problem with s = 1.8 requires roughly one level less and
less samples on each level in order to achieve the same accuracy as the MLMC330

method applied to the problem with s = 1.4. Therefore, the algorithm adapts
its behavior to the regularity of the problem to meet its targets. Secondly, in
the right column we can see a plot for the cost over the error bound ε.
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Figure 6: First row: MLMC method applied on s = 1.4 problem. Second row: MLMC
method applied on s = 1.8 problem. The left plots show the estimated number of samples
and levels in order to meet given error target, the right plots show the total cost (multiplied
by ε2) depending on ε. For comparison, MC∗ indicates the upper bound for the ε costs of the
standard MC method.

We multiplied the cost with ε2 to get a constant line if the MLMC method
matches the theoretical predictions. We also included an estimation for the335

costs of a standard MC method on a single level, which grows with ε−3 for the
problem type we regard here (thus in our plots it is given by the linearly growing
line).

Finally, we provide computations of the same problem with different dis-
cretizations in order to demonstrate the flexibility of the framework and to340

make suggestions about a proper usage of the MLMC method on different prob-
lems; the results are shown in Fig. 7. This shows that the computational cost
remains bounded by ε−2 for all discretization. The higher constants simply re-
sult from the larger algebraic systems which have to be solved. The system for
quadratic Lagrange elements is larger than the system for hybrid finite elements345

which is also larger than the one for linear finite elements. However, the higher
computational cost (constant wise) is justified by reproducing certain features
of the solution better. E.g., in the case of hybrid finite elements we can retain
flux conversation for the stochastically modeled problem.
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Figure 7: MLMC method applied with smoothing parameter s = 1.8 comparing linear and
quadratic Lagrange elements and hybrid elements.

Transport experiments with a stochastic Darcy flux. As a proof of concept for
more challenging applications, we present an example where the stochastic
Darcy flux (computed from the stochastic permeability) is then used as in-
put for the linear transport equation. Thus, consider q : Ω×D −→ Rd and the
density ρ : Ω× [0, T ]×D −→ R, such that for ω ∈ Ω

∂tρ(ω) + div(ρ(ω)q(ω)) = 0 in (0, T )×D, ρ(t = 0) = ρ0 in D

with inflow boundary condition

ρ = ρin on [0, T ]× Γin with Γin = {x ∈ ∂D : q(ω) · n < 0} .

In our experiment, we set ρin = 0, T = 1 and ρ0 as mollified bar in the upper350

half of D, cf. Fig. 8. The initial permeability κ is log-normally distributed with
parameters σ = 1.0, λ = 0.1, s = 1.9, and we choose the total mass in D at
T = 1 as goal functional G. Every sample of the PDE is solved with the implicit
mid point rule, where we scale the time step accordingly to the mesh resolution.
Again, we use quadratic dG elements and the solution is computed in parallel355

on 32 cores.

Figure 8: Initial distribution ρ0 and solution ρ(t) at t = 0.25, t = 0.5 and t = 1 for the
transport with stochastic Darcy flux for one sample.

The MLMC method is initialized from level 4 to 7 with M init
l = {16, 8, 4, 2},

and the required sample amount is estimated as described in Alg. 1. The results
are shown in Fig. 9.
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Figure 9: MLMC method applied to the linear transport equation. The left plot shows the
estimated number of samples and levels in order to meet given error target, the right plot
shows the total cost (multiplied by ε2) depending on ε.

7. Further applications and outlook360

Within M++ various models in physics and engineering are realized, e.g.,

• photonic band gap computations including an LOBPC eigenvalue solver
for Maxwell’s equations (Wieners (2011));

• parallel FE2 homogenization of an elasto-plastic damage model for glass
fiber reinforced polymers (Shirazi Nejad and Wieners (2019));365

• semi-smooth solution algorithms for incremental plasticity (Sauter and
Wieners (2011)), gradient plasticity (Reddy et al. (2012)), and dislocation
based plasticity (Schulz et al. (2019); Sandfeld et al. (2015));

• adaptive space-time discontinuous Galerkin methods for linear hyperbolic
systems with multilevel preconditioning (Dörfler et al. (2016)) and with370

applications to acoustic, elastic and visco-elastic waves (Dörfler et al.
(2019)).

Specific tutorials integrated in two summer school lectures can be downloaded
from http://www.waves.kit.edu/mpp.php with a comparison of time stepping
methods and space-time discretizations for linear waves and a realization of full375

waveform inversion in seismic imaging.
Currently, matrix free preconditioner, more general multilevel solver, and

flexible interfaces to meshing tools, parallel distribution methods, and tools for
data-driven material modeling are investigated and will be included step by step
into next releases of this software.380
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Ohlberger, M., Sander, O., 2008. A generic grid interface for parallel and adap-
tive scientific computing. part ii: implementation and tests in DUNE. Computing
82, 121–138.400

Bastian, P., Blatt, M., Engwer, C., Dedner, A., Klöfkorn, R., Kuttanikkad, S.,
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