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Abstract. We consider a full-upwind DG approximation in space and time for the linear transport equation.
Based on our results for linear symmetric Friedrichs systems we establish inf-sup stability and convergence in a
mesh-dependent DG norm, and we construct an error indicator with respect to this norm. Numerical results of
test problems with known solution demonstrate the efficiency of the a priori and a posteriori results as well for
smooth and for non-smooth solutions. Then, we show that by introducing suitable degrees of freedom on the
space-time element boundaries the corresponding hybrid formulation yields a reduction to a considerably smaller
linear system.
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2 A space-time DG method for the linear transport equation

1. Introduction

Full upwind discretizations in space for convection-diffusion systems and more general for hyperbolic conservation laws
are well established, and for upwind discretizations in time equivalence to implicit Runge-Kutta methods can be shown.
Combining these to space-time upwind discretizations has the advantage that this allows for a numerical analysis of
adaptive schemes where the discretization in space can be modified in every time step.

For linear symmetric Friedrichs systems and Hs regularity of the solutions, O(hs−1/2) convergence can be established for
discontinuous Galerkin approximations in space with respect to a suitable mesh-dependent DG norm [Ern and Guermond,
2021, Chap. 57], [Di Pietro and Ern, 2011, Chap. 7]. This applies also to a space-time approximation for acoustics, where
estimates for all discrete time steps in a DG semi-norm are presented in [Bansal et al., 2021, Prop. 6.5].

This is extended to DG full upwind space-time discretizations for linear wave equations in [Corallo et al., 2023], where
inf-sup stability and convergence in the mesh-dependent DG norm is proved and a corresponding error indicator is
constructed. Convergence order O(hs−1/2) in the mesh-dependent DG norm requires only Hs regularity in the space-time
cylinder and thus only Hs−1/2 regularity for the solution in space at fixed time. Since the L2 norm at the time steps can
be bounded by the mesh-dependent DG norm, this rate is optimal.

Here, these results are adapted to the linear transport equation, where the main difference in the analysis is the dependence
of the flux on the spatial coordinate which requires additional estimates and suitable assumptions on the flux vector.
Moreover, we show that the unified hybridized discontinuous Galerkin framework [Bui-Thanh, 2015] transfers to our
space-time method, i.e., by solving local problems in every space-time cell a reduced global system for the face degrees of
freedom is derived.

The numerical analysis in this work includes the lowest-order case with piece-wise constant approximations in every
space-time cell corresponding to finite volumes in space and the implicit Euler method in time. The stability of the
method is obtained by the upwind flux. This differs from other methods, where stability requires an appropriate choice
of the basis functions and the polynomial degree in the ansatz and/or test spaces.

A class of discontinuous Petrov–Galerkin methods (DPG) is introduced and applied to the transport equation in [Demkow-
icz and Gopalakrishnan, 2010], where for given discontinuous ansatz spaces an optimal test space is constructed, and the
continuity requirements of the solution are approximated weakly by introducing element interface degrees of freedom.
Solving local element problems, the system can be reduced to a symmetric positive definite system for the interface
variables. The DPG analysis proves convergence in the graph norm and is based on inf-sup stability with respect to
a sufficiently large test space. Qualitative convergence estimates require additional regularity of the solution. A corre-
sponding adaptive method is analyzed in [Dahmen et al., 2012], inf-sup stability is established in [Broersen et al., 2018],
and reliability and efficiency of an error estimator up to oscillations is shown in [Dahmen and Stevenson, 2019].

Meanwhile, the DPG method is applied to a large class of equations including space-time discretizations for acoustic
waves [Demkowicz et al., 2017,Gopalakrishnan and Sepúlveda, 2019, Ernesti and Wieners, 2019a, Ernesti and Wieners,
2019b]. Recent applications to convection-dominated problems and the extension to the Lp-DPG method are considered
in [Li and Demkowicz, 2022,Muñoz-Matute et al., 2022,Demkowicz et al., 2023].

Several approaches for convection-diffusion problems in space also apply to the transport equation. Here, hybrid high-
order methods (HHO) methods are well established for this problem class. An overview to this method and comparison
with other approaches are discussed in [Di Pietro et al., 2016].

The paper is organized as follows. In Sect. 2 we introduce the notation for weak and strong solutions of the linear
transport equation. In Sect. 3 we introduce the DG discretization in time and in space. In particular, two representations
for the full upwind method are derived, where the differential operator and the jump terms on the space-time element
interfaces are applied to the ansatz functions (primal representation) or to the test functions (dual representation). This
is essential for the analysis of well-posedness and stability in Sect. 4 as well as for the existence proof of weak solutions
and the qualitative convergence estimates in Sect. 5. Adapted to the a priori analysis in the mesh-depending DG norm,
we introduce in Sect. 6 an a posteriori error indicator, and numerical results in Sect. 7 illustrate the convergence of the
DG scheme for smooth solutions as well for discontinuous Riemann problems. The hybridization is addressed in Sect. 8.
In Sect. 9 we conclude with a short discussion of possible applications if the numerical analysis in mesh-dependent DG
norms also applies to other discretizations.
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2. The linear transport equation

We consider the linear transport equation in a bounded domain Ω ⊂ Rd with Lipschitz boundary ∂Ω and in the time
interval I = (0, T ). The space-time cylinder is denoted by Q = (0, T ) × Ω. For S ⊂ Q the L2 norm and inner product
are denoted by ∥ · ∥S and (·, ·)S . Let n ∈ L∞(∂Ω;Rd) be the outer normal vector field a.e. defined on ∂Ω, and for convex
subsets K ⊂ Ω outer normal vector field is denoted by nK ∈ L∞(∂K;Rd).

We aim to compute the transport of a quantity u : [0, T ] × Ω −→ R along a given vector field q : Ω −→ Rd. The
corresponding flux function f is given by f(u)(t,x) = u(t,x)q(x) for (t,x) ∈ Q, and the evolution is characterized by the
conservation property for all convex subsets K ⊂ Ω and time intervals (t1, t2) ⊂ (0, T )∫

K

(
u(t2,x)− u(t1,x)

)
dx+

∫ t2

t1

∫
∂K

f(u)(t,x) · n(x) da dt = 0 . (2.1)

In order to obtain a unique solution, the conservation property is complemented by the initial condition

u(0,x) = u0(x) , x ∈ Ω (2.2)

and the boundary condition on the inflow boundary Γin = {x ∈ ∂Ω: q(x) · n(x) < 0}

f(u)(t,x) · n(x) = gin(t,x) , (t,x) ∈ (0, T )× Γin . (2.3)

If the solution u and the vector field q are sufficiently smooth, the conservation property (2.1) is equivalent to

∂tu+ div f(u) = 0 in Q . (2.4)

Multiplication with a smooth test function v : [0, T ]×Ω −→ R and integration by parts in the space-time cylinder yields

0 =

∫
Q

(
∂tu(t,x) + div

(
f(u)(t,x)

)
v(t,x) d(t,x) (2.5)

=

∫
Q

u(t,x)
(
− ∂tv(t,x)− q(x) · ∇v(t,x)

)
d(t,x)

+

∫
Ω

(
u(T,x)v(T,x)− u(0,x)v(0,x)

)
dx+

∫ T

0

∫
∂Ω

f(u)(t,x) · n(x)v(t,x) da dt .

This motivates to define the test space with complementary homogeneous space-time boundary conditions

V∗ =
{
v ∈ C1(Q) : v(T,x) = 0 for x ∈ Ω , v(t,x) = 0 on (t,x) ∈ (0, T )× Γout

}
, Γout = ∂Ω \ Γin .

Definition 2.1. For given vector field q ∈ L2(Ω;Rd), initial value u0 ∈ L2(Ω), and inflow data gin ∈ L2((0, T )× Γin),
u ∈ L2(Q) is a weak solution of the linear transport equation, if∫

Q

u(t,x)
(
− ∂tv(t,x)− q(x) · ∇v(t,x)

)
d(t,x) =

∫
Ω

u0(x)v(0,x) dx−
∫ T

0

∫
Γin

gin(t,x)v(t,x) da dt , v ∈ V∗ . (2.6)

Defining Lu = ∂tu+ div(f(u)) and the adjoint L∗v = −∂tv − q · ∇v, we directly obtain the following result from (2.5).

Lemma 2.2. Let u ∈ L2(Q) be a weak solution. Then we obtain by (2.6) that the weak derivative Lu ∈ L2(Q) exists
satisfying (Lu, v)Q = (u, L∗v)Q = 0 for v ∈ C1

c(Q), so that Lu = 0 in Q. If in addition the solution is sufficiently regular
with initial value u(0) ∈ L2(Ω) and trace f(u) ·n|I×Γin ∈ L2(I×Γin), the weak solution is also a strong solution satisfying
the equation (2.4), the initial condition (2.2), and the boundary condition (2.3).

Remark 2.3. For weak solutions of symmetric Friedrichs systems the definition of the test space with adjoint boundary
conditions is discussed in detail in [Corallo et al., 2023]. This directly corresponds to the boundary conditions of the
adjoint problem L∗v = r backward in time within dual-primal error estimation; see [Dörfler et al., 2023, Chap. 4] for the
application to space-time discretizations of linear hyperbolic systems.

Remark 2.4. In porous media applications the pressure distribution p ∈ H1(Ω) and the flux vector q ∈ H(div,Ω) for
given uniformly positive definite permeability tensor κ ∈ Rd×d

sym are determined by the elliptic problem

q = −κ∇p and divq = 0 in Ω , p = pD on ΓD ⊂ ∂Ω , q · n = gN on ΓN = ∂Ω \ ΓD . (2.7)
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3. The space-time full-upwind discontinuous Galerkin discretization for linear transport

3.1. Discontinuous finite element spaces in the space-time cylinder

We use the notation introduced in [Corallo et al., 2023] for tensor product space-time meshes combining the mesh in
space Ωh with a decomposition in time Ih.

Let the elements K ⊂ Ω, K ∈ Kh be open polygons, and we assume that also the domain Ω is a polygon so that
Ωh =

⋃
K∈Kh

K and Ω = Ωh ∪ ∂Ωh. For N ∈ N let 0 = t0 < t1 < · · · < tN = T be a time series.

We define the open time intervals In,h = (tn−1, tn), n = 1, . . . , N , the decomposition

[0, T ] = Ih ∪ ∂Ih , Ih = (t0, t1) ∪ · · · ∪ (tN−1, tN ) ⊂ I = (0, T ) , ∂Ih = {t0, t1, . . . , tN−1, tN}

with time-step sizes △tn = tn − tn−1. Let △t = max△tn be the maximal time step. We assume quasi-uniformity in Ih,
i.e., △tn ∈ [cqu△t,△t] with cqu ∈ (0, 1] independent of N .

In the space-time cylinder Q we define a tensor-product decomposition into space-time cells

Rh =
{
R = In,h ×K : n = 1, . . . , N, K ∈ Kh

}
,

Qh = Ih × Ωh =

N⋃
n=1

Qn,h =
⋃

R∈Rh

R ⊂ Q = I × Ω ⊂ R1+d , with Qn,h =
⋃

K∈Kh

In,h ×K ⊂ In,h × Ω .

Let F ∈ FK be the faces of the element K, and we set Fh =
⋃

K∈Kh

FK , so that ∂Ωh =
⋃

F∈Fh

F is the skeleton in space

and ∂Qh = ∂Ih × Ωh ∪ Ih × ∂Ωh is the corresponding space-time skeleton.

For inner faces F ∈ Fh ∩ Ω and K ∈ Kh, let KF be the neighboring cell such that F = ∂K ∩ ∂KF . We assume that the
inflow boundary is compatible with the mesh, i.e., Γin =

⋃
F∈Fh∩Γin

F .

The DG discretization is defined for a finite dimensional subspace Vh ⊂ Vh ⊂ C1(Ih;Sh), where

Sh =
{
vh ∈ C1(Ωh) : vh,K = vh|K extends continuously to vh,K ∈ C0(K)

}
Vh =

{
vh ∈ C1(Qh) : vn,h,K = vh|In,h×K extends continuously to vn,h,K ∈ C0(In,h ×K)

}
.

We set hK = diamK, hF = diamF , and h = maxhK . We assume quasi-uniform meshes and shape-regularity, i.e.,
hF ≥ csrhK for F ∈ FK and hK ≥ cmrh with csr, cmr > 0 independent of K ∈ Kh. In the following, we use the
mesh-dependent weighted L2 norm in the space-time cylinder and the L2 norm on the space-time skeleton ∂Qh

∥∥h−1/2vh
∥∥
Qh

=
( N∑

n=1

∑
K∈Kh

h−1
K ∥vh∥2In,h×K

)1/2
,

∥∥vh∥∥∂Qh
=
( N∑

n=1

∑
K∈Kh

∥vn,h,K∥2∂(In,h×K)

)1/2
, vh ∈ Vh .

For the vector field q ∈ L2(Ω;Rd) let qh ∈ L∞(Ωh;Rd)∩H(div,Ω) be a H(div,Ω) conforming finite element approximation,
so that qh,K · nK = qh,KF

· nK on all inner faces F = ∂K ∩ ∂KF . We assume for simplicity that qh,K · nK |F is constant
for all F ∈ Fh, since we use lowest-order Raviart-Thomas approximations for the flux vector in our implementation.

For every space-time cell R = In,h ×K we select polynomial degrees pR = pn,K ≥ 0 in time and sR = sn,K ≥ 0 in space.
With this we define Vh,R = Ppn,K

⊗ Psn,K
(K) and the discontinuous finite element spaces in Ω and in Q

Sn,h =
∏

K∈Kh

Psn,K
(K) , Sh = S1,h + · · ·+ SN,h ⊂ Sh ,

Vn,h =
∏

K∈Kh

Ppn,K
⊗ Psn,K

(K) , Vh = V1,h + · · ·+ VN,h ⊂ Vh ,

where Pp denotes the space of polynomials up to order p. For the following, we fix p = max pR and s = max sR, so that

Sn,h ⊂ Sh ⊂ Ps(Ωh) ⊂ Sh , Vh ⊂ Pp(Ih)⊗ Sh ⊂ Pp(Ih)⊗ Ps(Ωh) ⊂ Vh .
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3.2. The discontinuous Galerkin method with full upwind for linear transport

We construct a discretization for the linear problem to find u ∈ L2(Q) solving

b(u,w) = ℓ(w) , w ∈ V∗

with b(v, w) = m(v, w) +

∫ T

0

a(v(t), w(t)) dt and, using the notation v(t) = v(t, ·) ∈ L2(Ω),

m(v, w) = −
∫
Q

v∂tw d(t,x) , a(v(t), w(t)) = −
∫
Ω

f(v(t)) · ∇w(t) dx , ℓ(w) =

∫
Ω

u0w(0) dx−
∫ T

0

∫
Γin

gin(t)w(t) dadt .

The Riemann problem. In the first step, we consider the special case q ∈ Rd and constant initial values u−, u+ ∈ R
for x · n < 0 and x · n > 0 with n ∈ Rd, n · n = 1. Then we define the piecewise constant function u ∈ L2(Q) by

u(t,x) =

{
u− , (x− tq) · n < 0 ,

u+ , (x− tq) · n > 0 ,

and we observe for v ∈ C1
c(Q)

(
u,−∂tv − q · ∇v

)
Q
=

∫
Q

u(t,x)

(
1
q

)
·
(
−∂tv(t,x)
−∇v(t,x)

)
d(t,x) =

∫
{(t,x)∈Q : (x−tq)·n=0}

(u+ − u−)v(t,x)

(
1
q

)
·
(
q · n
−n

)
da(t,x) = 0 ,

i.e., u is a weak solution of the transport equation. In particular, for t > 0 and x ·n = 0 we obtain u(t,x) = u− if q ·n > 0
and u(t,x) = u+ if q · n < 0. This now defines the upwind flux.

Full upwind in space. For vh, wh ∈ Sh we observe for the discrete flux fh(vh) = vh qh, integrating by parts for K ∈ Kh,

(
div fh(vh), wh

)
Ωh

=
∑

K∈Kh

(
−
(
fh(vh,K),∇wh,K

)
K
+
∑

F∈FK

(
fh(vh,K) · nK , wh,K

)
F

)
.

For conforming functions v ∈ H1(Ω), the flux fh(v) is well defined on inner faces F ∈ Fh ∩ Ω.
For discontinuous functions vh ∈ Vh, this is approximated by the upwind flux

fup
K,F (vh) =


fh(vh,K) , F ∈ Fout

K ,

fh(vh,KF
) , F ∈ F in

K \ Γin ,

0 , F ∈ F in
K ∩ Γin ,

with

{
Fout

K =
{
F ∈ FK : qh · nK ≥ 0 on F

}
,

F in
K =

{
F ∈ FK : qh · nK < 0 on F

}
,

(3.1)

and we set

ah(vh, wh) =
∑

K∈Kh

(
−
(
fh(vh,K),∇wh,K

)
K
+
∑

F∈FK

(
fup
K,F (vh) · nK , wh,K

)
F

)
. (3.2)

We set fup
K,F (vh) = 0 on F ∈ F in

K ∩Γin since we insert gin on the inflow boundary which is included in the right-hand side.

Integrating (3.2) by parts yields

ah(vh, wh) =
∑

K∈Kh

((
div fh(vh,K), wh,K

)
K
+
∑

F∈FK

(
(fup

K,F (vh)− fh(vh,K)) · nK , wh,K

)
F

)
. (3.3)

Defining [vh]K,F = vh,KF
− vh,K on inner faces F ∈ Fh ∩ Ω, we obtain

(
fup
K,F (vh)− fh(vh,K)

)
· nK = [vh]K,F

1

2

(
qh · nK − |qh · nK |

)
.

This yields the following equality.

Lemma 3.1. We have

ah(vh, vh) =
1

2

∫
Ωh

v2h divqh dx+
1

4

∑
K∈Kh

∑
F∈FK∩Ω

∫
F

([vh]K,F )
2 |qh · nK |da+

1

2

∫
∂Ω

v2h |qh · n|da , vh ∈ Sh .
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Proof. We obtain from (3.2) and (3.3) and div fh(vh) = vh divqh + qh · ∇vh in Ωh

ah(vh, vh) =
1

2

∑
K∈Kh

(
−
(
fh(vh,K),∇vh,K

)
K
+
∑

F∈FK

(
fup
K,F (vh) · nK , vh,K

)
F

+
(
div fh(vh,K), vh,K

)
K
+
∑

F∈FK

(
(fup

K,F (vh)− fh(vh,K)) · nK , vh,K
)
F

)

=
1

2

∫
Ωh

v2h divqh dx+
1

2

∑
K∈Kh

∑
F∈FK

(
(2fup

K,F (vh)− fh(vh.K)) · nK , vh,K
)
F
,

so that we obtain the assertion by proving the identity

∑
K∈Kh

∑
F∈FK

(
(2fup

K,F (vh)− fh(vh,K)) · nK , vh,K
)
F
=

1

2

∑
K∈Kh

∑
F∈FK∩Ω

(
[vh]K,F |qh · nK |, [vh]K,F

)
F
+

∫
∂Ω

v2h|qh · n|da .

On inner faces F ∈ Fh ∩ Ω, this follows from(
(2fup

K,F (vh)− fh(vh,K)) · nK , vh,K
)
F
+
(
(2fup

KF ,F (vh)− fh(vh,KF
)) · nKF

, vh,KF

)
F

=
(
[vh]K,F (qh · nK − |qh · nK |), vh,K

)
F
+
(
[vh]KF ,F (qh · nKF

− |qh · nKF
|), vh,KF

)
F

+
(
fh(vh,K) · nK , vh,K

)
F
+
(
fh(vh,KF

) · nKF
, vh,KF

)
F

=
(
[vh]K,Fqh · nK , vh,K

)
F
−
(
[vh]K,F |qh · nK |, vh,K

)
F
+
(
[vh]K,Fqh · nK , vh,KF

)
F
+
(
[vh]K,F |qh · nK |, vh,KF

)
F

+
(
vh,Kqh · nK , vh,K

)
F
−
(
vh,KF

qh · nK , vh,KF

)
F

=
(
[vh]K,F |qh · nK |, [vh]K,F

)
F

since
(
[vh]K,Fqh · nK , vh,K

)
F
+
(
[vh]K,Fqh · nK , vh,KF

)
F
+
(
vh,Kqh · nK , vh,K

)
F
−
(
vh,KF

qh · nK , vh,KF

)
F
= 0 .

On the boundary, we have(
(2fup

K,F (vh)− fh(vh)) · nK , vh
)
F
= −

(
vhqh · nK , vh

)
F
=
(
vh|qh · nK |, vh

)
F
, F ∈ Fh ∩ Γin ,(

(2fup
K,F (vh)− fh(vh)) · nK , vh

)
F
=

(
vhqh · nK , vh

)
F
=
(
vh|qh · nK |, vh

)
F
, F ∈ Fh ∩ Γout . □

Full upwind in time. For vh, wh ∈ Vh we obtain after integration by parts in all intervals In,h ⊂ Ih

(
∂tvh, wh

)
Qh

=

N∑
n=1

(
−
(
vn,h, ∂twn,h

)
Qn,h

+
(
vn,h(tn), wn,h(tn)

)
Ω
−
(
vn,h(tn−1), wn,h(tn−1)

)
Ω

)
.

Introducing the jump terms [wh]n = wn+1,h(tn)− wn,h(tn) for n = 1, . . . , N − 1 and [wh]N = −wN,h(tN ), we define

mh(vh, wh) =

N∑
n=1

(
−
(
vn,h, ∂twn,h

)
Qn,h

−
(
vn,h(tn), [wh]n

)
Ω

)
. (3.4)

Again integrating by parts and defining [vh]0 = v1,h(0) yields

mh(vh, wh) =
(
∂tvh, wh

)
Qh

+

N∑
n=1

(
[vh]n−1, wn,h(tn−1)

)
Ω
. (3.5)

Together, we obtain for vh ∈ Vh from (3.4) and (3.5)

2mh(vh, vh) = mh(vh, vh) +mh(vh, vh) =

N∑
n=1

((
[vh]n−1, vn,h(tn−1)

)
Ω
−
(
vn,h(tn), [vh]n

)
Ω

)
(3.6)

=
(
vh(0), vh(0)

)
Ω
+
(
vh(T ), vh(T )

)
Ω
+

N−1∑
n=1

((
[vh]n, vn+1,h(tn)

)
Ω
−
(
vn,h(tn), [vh]n

)
Ω

)
=

N∑
n=0

∥∥[vh]n∥∥2Ω ≥ 0 .
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The full upwind method in space and time. The discrete bilinear form is defined by

bh(vh, wh) = mh(vh, wh) +

∫ T

0

ah(vh(t), wh(t)) dt , vh, wh ∈ Vh . (3.7)

From (3.2) and (3.4) we obtain consistency up to the data error by the approximation of the vector field q

bh(vh, w) = b(vh, w) +

∫
Q

vh(q− qh) · ∇w d(t,x) , vh ∈ Vh, w ∈ V∗ (3.8)

for smooth test functions, and from Lem. 3.1 and (3.6) we get for discontinuous functions vh ∈ Vh

bh(vh, vh) =
1

2

N∑
n=0

∥∥[vh]n∥∥2Ω +
1

2

(
vh divqh, vh

)
Q
+

1

2

∑
F∈Fh∩Ω

∥∥|qh · nK |1/2[vh]K,F

∥∥2
I×F

+
1

2

∥∥|qh · n|1/2vh
∥∥2
I×∂Ω

. (3.9)

The following analysis relies on a stability estimate weighted in time by dT (t) = T − t.

Lemma 3.2. If divqh ≥ 0, we have

∥vh∥2Qh
+ T ∥vh(0)∥2Ωh

≤ 2 bh(vh, dT vh) , vh ∈ Vh .

Proof. The identity for vh ∈ Vh

∥vh∥2Qh
= −

N∑
n=1

∫ tn

tn−1

(
vh(t), vh(t)

)
Ωh

∂tdT (t) dt

=

N∑
n=1

(
2

∫ tn

tn−1

(
∂tvh(t), vh(t)

)
Ωh

dT (t) dt− dT (tn)
(
vn,h(tn), vn,h(tn)

)
Ωh

+ dT (tn−1)
(
vn,h(tn−1), vn,h(tn−1)

)
Ωh

)

= 2
(
∂tvh, dT vh

)
Qh

+

N−1∑
n=1

dT (tn)
((

vn+1,h(tn), vn+1,h(tn)
)
Ωh

−
(
vn,h(tn), vn,h(tn)

)
Ωh

)
− T ∥v1,h(t0)∥2Ωh

is bounded by

N−1∑
n=1

dT (tn)
((

vn+1,h(tn), vn+1,h(tn)
)
Ωh

−
(
vn,h(tn), vn,h(tn)

)
Ωh

)
=

N−1∑
n=1

dT (tn)
(
vn+1,h(tn)− vn,h(tn), vn+1,h(tn) + vn,h(tn)

)
Ωh

=

N−1∑
n=1

dT (tn)
(
[vh]n, vn+1,h(tn) + vn,h(tn)

)
Ωh

=

N−1∑
n=1

dT (tn)
(
2
(
[vh]n, vn+1,h(tn)

)
Ωh

−
(
[vh]n, [vh]n

)
Ωh

)
≤ 2

N∑
n=2

dT (tn−1)
(
[vh]n−1, vn,h(tn−1)

)
Ω
,

so that the assertion follows from divqh ≥ 0 and Lem. 3.1 by

(
vh, vh

)
Qh

+ T ∥v1,h(t0)∥2Ωh
≤ 2
(
∂tvh, dT vh

)
Qh

+ 2

N∑
n=1

dT (tn−1)
(
[vh]n−1, vn,h(tn−1)

)
Ωh

= 2mh(vh, dT vh)

≤ 2mh(vh, dT vh) + 2

∫ T

0

dT (t)a(vh(t), vh(t)) dt = 2 bh(vh, dT vh) .

□

Remark 3.3. The DG method in time with fixed polynomial degree is equivalent to the Radau Ia collocation method.
This is used in [Corallo et al., 2023, Sect. 4.2] to construct an interpolation operator Ih : Vh −→ Vh which can be applied
to extend the stability result in Lem. 3.2 as follows: if pn,K = pn for all K ∈ Kh and n = 1, . . . , N , we have∥∥vh∥∥2Q ≤ 2 bh

(
vh, Ih(dT vh)

)
, vh ∈ Vh .
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8 A space-time DG method for the linear transport equation

4. Well-posedness and stability for the DG method

In this section we show that a unique discrete solution exists and that the solution is stable with respect to a mesh-
dependent DG norm. Therefore, we assume for the H(div)-conforming approximation of the flux vector

A1) divqh ≥ 0,
A2) for the discontinuous function div(vhqh) in Qh we assume div(vhqh) ∈ Vh,
A3) inflow and outflow boundary characterized from the continuous and the discrete flux coincide, i.e.,

Γin =
⋃

F∈F in
h

F , Γout =
⋃

F∈Fout
h

F with F in
h =

⋃
K∈Kh

F in
K , Fout

h =
⋃

K∈Kh

Fout
K .

4.1. Well-posedness of the full-upwind space-time DG discretization for linear transport

Lemma 4.1. A unique Galerkin approximation uh ∈ Vh exists solving

bh(uh, vh) = ℓ(vh) , vh ∈ Vh . (4.1)

Proof. dimVh < ∞, so it is sufficient to show that uh = 0 is the unique solution of the homogeneous problem ℓ = 0.
Then, bh(uh, uh) = 0, so that by (3.6), Lem. 3.1 and assumption A1) all jump terms and boundary traces are vanishing,
and we obtain from (3.2), (3.3), (3.4), and (3.5)

0 = bh(uh, vh) =
(
uh,−∂tvh − qh · ∇vh

)
Qh

=
(
∂tuh + div(uhqh), vh

)
Qh

, vh ∈ Vh . (4.2)

Now, defining vh = ∂tuh + div(uhqh) in Qh we observe by assumption A2) that vh ∈ Vh.
This yields 0 = bh(uh, vh) =

∥∥∂tuh + div(uhqh)∥2Qh
, i.e., ∂tuh + div(uhqh) = 0. Thus, (4.2) extends to Vh, i.e., we have

bh(uh, vh) =
(
∂tuh + div(uhqh), vh

)
Qh

= 0 , vh ∈ Vh .

Testing with vh = dTuh ∈ Vh we obtain from Lem. 3.2 that ∥uh∥2Qh
≤ 2bh(uh, dTuh) = 0, which finally proves uh = 0. □

4.2. Inf-sup stability of the full-upwind method in the DG norm

For all vh ∈ Vh we define the DG semi-norms and norms

∣∣vh∣∣h,DG
=

(
1

2

N∑
n=0

∥∥[vh]n∥∥2Ω +
1

4

∑
K∈Kh

∑
F∈FK∩Ω

∥∥|qh · nK |1/2[vh]K,F

∥∥2
Ih×F

+
1

2

∥∥|qh · n|1/2vh
∥∥2
Ih×∂Ω

)1/2

,

∣∣vh∣∣h,DG+ =

(
1

2

N∑
n=1

(∥∥vn,h(tn−1)
∥∥2
Ω
+
∥∥vn,h(tn)∥∥2Ω)+ 1

2

∑
K∈Kh

∥∥|qh · nK |1/2vh
∥∥2
Ih×∂K

)1/2

,

∥∥vh∥∥h,DG
=
√∣∣vh∣∣2h,DG

+
∥∥h1/2 (∂tvh + div(vhqh))

∥∥2
Qh

,
∥∥vh∥∥h,DG+ =

√∣∣vh∣∣2h,DG+ +
∥∥h−1/2vh

∥∥2
Qh

. (4.3)

By construction, we have
∣∣vh∣∣h,DG

≤
∣∣vh∣∣h,DG+ , bh(vh, wh) ≤

∥∥vh∥∥h,DG

∥∥wh

∥∥
h,DG+ , and using (3.3) and (3.5), we obtain∣∣bh(vh, wh)−

(
∂tvh + div(vhqh), wh

)
Qh

∣∣ ≤ ∣∣vh∣∣h,DG

∣∣wh

∣∣
h,DG+ , vh, wh ∈ Vh . (4.4)

Analogously to the proof of Lem. 4.1 we observe that
∥∥vh∥∥h,DG

= 0 implies vh = 0, so that
∥∥ · ∥∥

h,DG
indeed is a norm.

In order to calibrate the accuracy in space and time, we assume for the maximal mesh size in time △t and in space h

cref△t ≤ h , (4.5)

where cref > 0 is a reference velocity depending on the flux vector. Since in the following all estimates depend on cref, we
use in our applications appropriate physical units in space and time so that cref is a moderate number.

Depending on the space-time mesh regularity (and thus also on cref) and on qh, constants Cinv, Ctr > 0 exists such that∥∥h1/2 (∂tvh + div(vhqh))
∥∥
Qh

≤ Cinv
∥∥h−1/2vh

∥∥
Qh

,
∥∥vh∥∥∂Qh

≤ Ctr
∥∥h−1/2vh

∥∥
Qh

, vh ∈ Vh . (4.6)
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C. Wieners 9

Inf-sup stability in the DG norm is introduced for the advection equation in [Di Pietro and Ern, 2011, Lem. 2.35]. This
is transferred to symmetric Friedrichs systems in [Corallo et al., 2023] and also applies to linear transport.

Theorem 4.2. We have

sup
wh∈Vh\{0}

bh(vh, wh)∥∥wh

∥∥
h,DG

≥ cinf-sup
∥∥vh∥∥h,DG

, vh ∈ Vh

with cinf-sup > 0 independent of the mesh size h and only depending on the mesh regularity and the flux vector.

Proof. For given vh ∈ Vh \ {0} we define zh = h
(
∂tvh + div(vhqh)

)
in Qh, and by assumption A2) we have zh ∈ Vh.

The discrete trace inequality (4.6) yields∣∣zh∣∣h,DG+ ≤ Ctr
∥∥h−1/2zh

∥∥
Qh

= Ctr
∥∥h1/2

(
∂tvh + div(vhqh)

)∥∥
Qh

≤ Ctr
∥∥vh∥∥h,DG

.

Together with the inverse inequality (4.6) we obtain∥∥zh∥∥2h,DG
=
∣∣zh∣∣2h,DG

+
∥∥h1/2

(
∂tzh + div(zhqh)

)∥∥2
Qh

(4.7)

≤
∣∣zh∣∣2h,DG+ + C2

inv
∥∥h−1/2zh

∥∥2
Qh

≤
(
C2

tr + C2
inv
)∥∥vh∥∥2h,DG

.

Using (4.4) we get(
∂tvh + div(vhqh), zh

)
Qh

− bh(vh, zh) ≤
∣∣(∂tvh + div(vhqh), zh

)
Qh

− bh(vh, zh)
∣∣

≤
∣∣vh∣∣h,DG

∣∣zh∣∣h,DG+ ≤ C2
tr

2

∣∣vh∣∣2h,DG
+

1

2C2
tr

∣∣zh∣∣2h,DG+ ≤ C2
tr

2

∣∣vh∣∣2h,DG
+

1

2

∥∥vh∥∥2h,DG
.

Inserting
∥∥h1/2(∂tvh + div(vhqh))

∥∥2
Qh

=
(
∂tvh + div(vhqh), zh

)
Qh

this yields

∥∥vh∥∥2h,DG
=
∣∣vh∣∣2h,DG

+
(
∂tvh + div(vhqh), zh

)
Qh

≤
∣∣vh∣∣2h,DG

+
C2

tr

2

∣∣vh∣∣2h,DG
+

1

2

∥∥vh∥∥2h,DG
+ bh(vh, zh) . (4.8)

Using A1) implies
∣∣vh∣∣2h,DG

≤ bh(vh, zh) by (3.9), and together with (4.8) we obtain, defining C = 2 + C2
tr,∥∥vh∥∥2h,DG

≤ C
∣∣vh∣∣2h,DG

+ 2 bh(vh, zh) ≤ bh(vh, Cvh + 2zh) . (4.9)

From (4.7) we obtain
∥∥Cvh + 2zh

∥∥
h,DG

≤
(
C + 2

√
C2

tr + C2
inv
)∥∥vh∥∥h,DG

, and we observe Cvh + 2zh ̸= 0 for vh ̸= 0.
Together, this yields the assertion by

∥∥vh∥∥2h,DG
≤
∥∥Cvh + 2zh

∥∥
h,DG

bh(vh, Cvh + 2zh)∥∥Cvh + 2zh
∥∥
h,DG

≤
(
C + 2

√
C2

tr + C2
inv

)∥∥vh∥∥h,DG
sup

wh∈Vh\{0}

bh(vh, wh)∥∥wh

∥∥
h,DG

,

i.e., cinf-sup =
(
C + 2

√
C2

tr + C2
inv
)−1. □

Remark 4.3. In the numerical experiments we use lowest-order Raviart-Thomas approximations of the flux vector, so
that the assumption A2) is satisfied. Nevertheless, this restricts the order of the consistency error qh − q, so that for
higher-order convergence a better approximation of the flux vector is required. But then it is additionally required that
for all vh ∈ Vh with div(vhq) ̸= 0 the discontinuous function div(vhqh)|Qh

is not L2-orthogonal to Vh. In analogy to the
DPG or HHO method, this may require to modify the discrete ansatz and/or test space.
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10 A space-time DG method for the linear transport equation

5. Convergence of the DG space-time approximation for linear transport

We show for a sequence of meshes that uniform stability in L2 implies asymptotic convergence, and then, in case that the
solution is sufficiently regular, we prove qualitative convergence in the DG norm.

5.1. Asymptotic convergence

For a sequence of mesh sizes H = {h0, h1, h2, . . .} ⊂ (0,∞) and 0 ∈ H, let
(
Qh

)
h∈H be a shape-regular family of space-time

meshes and
(
Vh

)
h∈H the corresponding DG finite element spaces, so that

lim
h∈H

inf
vh∈Vh

∥∥v − vh
∥∥
Q
= 0 , v ∈ L2(Q) . (5.1)

For h ∈ H, let uh ∈ Vh be the solution of the discrete problem (4.1), i.e.,

bh(uh, vh) =
(
u0, vh(0)

)
Ω
−
(
gin, vh

)
I×Γin

, vh ∈ Vh .

Since 1
2

∥∥vh(0)∥∥2Ω + 1
2

∥∥|qh · n|1/2vh
∥∥2
Ih×Γin

≤
∣∣vh∣∣2h,DG

, inf-sup stability implies for the discrete solution uh ∈ Vh

cinf-sup
∥∥uh

∥∥
h,DG

≤ sup
vh∈Vh\{0}

bh(uh, vh)∥∥vh∥∥h,DG

= sup
vh∈Vh\{0}

(
u0, vh(0)

)
Ω
−
(
gin, vh

)
Ih×Γin∥∥vh∥∥h,DG

≤
√
2
∥∥u0
∥∥
Ω
+

√
2
∥∥|qh · n|−1/2gin

∥∥
Ih×Γin

. (5.2)

Lemma 5.1. Assume for the approximation of the flux vector qh and the solution discrete uh ∈ Vh

1) Cin > 0 exists such that
∥∥ |qh · n|−1/2gin

∥∥
I×Γin

≤ Cin is uniformly bounded for h ∈ H;
2) Cq > 0 exists such that

∥∥ |qh · n|1/2uh

∥∥
Ih×∂Ωh

≤ Cq

∥∥uh

∥∥
Ih×∂Ωh

for all h ∈ H;
3) strong convergence in L2, i.e., lim

h∈H

∥∥qh − q
∥∥
Ω
= 0.

Then,
a) (uh)h∈H is weakly converging in L2(Q);
b) the weak limit u ∈ L2(Q) is a weak solution;
c) the weak solution u ∈ L2(Q) is unique;
d) the weak solution is also a strong solution satisfying Lu = 0 in Q, f(u) · n = gin on I × Γin, and u(0) = u0 in Ω.

Proof. From 1), 2) and 2
∣∣uh

∣∣2
h,DG+ =

∥∥uh

∥∥2
∂Ih×Ωh

+
∥∥ |qh · n|1/2uh

∥∥2
Ih×∂Ωh

≤
∥∥uh

∥∥2
∂Ih×Ωh

+ C2
q

∥∥uh

∥∥2
Ih×∂Ωh

we obtain by
(5.2) and (4.6) for the discrete solution

∥∥uh

∥∥
h,DG

≤
√
2

cinf-sup

(∥∥u0
∥∥
Ω
+ Cin

)
,

∥∥uh

∥∥
h,DG+ ≤

√
1 +

1

2
max{1, C2

q}C2
tr
∥∥h−1/2uh

∥∥
Qh

, h ∈ H , (5.3)

and depending on the mesh regularity we get cmr
∥∥h−1/2uh

∥∥2
Qh

≤ h−1
∥∥uh

∥∥2
Q

. We set C+ =
√

1 + 1
2 max{1, C2

q}C2
tr.

For h ∈ H let tn,h, n = 0, . . . , Nh be the time steps in [0, T ], and set △th = max tn,h. For dT,h(t) = tn−1,h in
(tn−1,h, tn,h) we obtain from (4.5) the bound 0 ≤ dT,h(t) − dT (t) ≤ △th ≤ c−1

refh, and together with (5.3) this yields∥∥(dT − dT,h)uh

∥∥
h,DG+ ≤ c−1

refh
∥∥uh

∥∥
h,DG+ ≤ c−1

refhC+

∥∥h−1/2uh

∥∥
Qh

≤ c−1
refC+c

−1/2
mr h1/2

∥∥uh

∥∥
Q

. By Lem. 3.2 we get∥∥uh

∥∥2
Q
+ T

∥∥uh(0)
∥∥2
Ω
≤ 2 bh(uh, dTuh) = 2 bh(uh, dT,huh) + 2 bh(uh, (dT − dT,h)uh)

≤ 2
(
u0, dT,h(0)uh(0)

)
Ω
− 2
(
gin, dT,huh

)
I×Γin

+ 2
∥∥uh

∥∥
h,DG

∥∥(dT − dT,h)uh

∥∥
h,DG+

≤ 2T
∥∥u0
∥∥
Ω

∥∥uh(0)
∥∥
Ω
+ 2T Cin

∣∣uh

∣∣
h,DG

+ 2 c−1
refC+c

−1/2
mr h1/2

∥∥uh

∥∥
h,DG

∥∥uh

∥∥
Q

≤ 2T
∥∥u0
∥∥2
Ω
+

T

2

∥∥uh(0)
∥∥2
Ω
+ 2T Cin

∥∥uh

∥∥
h,DG

+
2C2

+h

c2refcmr

∥∥uh

∥∥2
h,DG

+
1

2

∥∥uh

∥∥2
Q
,

so that, using (5.3), the discrete solution is bounded by

1

2

∥∥uh

∥∥2
Q
+

T

2

∥∥uh(0)
∥∥2
Ω
≤ 2T

∥∥u0
∥∥2
Ω
+ 2T Cin

∥∥uh

∥∥
h,DG

+
2C2

+h

c2refcmr

∥∥uh

∥∥2
h,DG

(5.4)

≤ 2T
∥∥u0
∥∥2
Ω
+

2
√
2T Cin

cinf-sup

(∥∥u0
∥∥
Ω
+ Cin

)
+

4C2
+h

c2inf-supc
2
refcmr

(∥∥u0
∥∥
Ω
+ Cin

)2
.
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C. Wieners 11

Then a subsequence H0 ⊂ H with 0 ∈ H0 exists such that (uh)h∈H0 is weakly converging to u ∈ L2(Q) and as well(
uh(0)

)
h∈H0

is weakly converging to u(0) ∈ L2(Ω).

For all smooth test functions v ∈ V∗ and corresponding discrete approximations vh ∈ Vh, h ∈ H with

lim
h∈H

(
∥qh · ∇(v − vh)∥Qh

+ ∥∂t(v − vh)∥Qh
+ ∥v − vh∥Q + ∥v − vh∥∂Qh

)
= 0

we obtain, using (3.8) and strong convergence 3) of qh, the identity

b(u, v) = lim
h∈H0

b(uh, v) = lim
h∈H0

(
bh(uh, v) +

(
uh, (qh − q) · ∇v

)
Ω

)
= lim

h∈H0

bh(uh, vh)

= lim
h∈H0

((
u0, vh(0)

)
Ω
−
(
gin, vh

)
Ih×Γin

)
=
(
u0, v(0)

)
Ω
−
(
gin, v

)
I×Γin

, (5.5)

i.e., u is a weak solution. Moreover, b(u, v) =
(
u,−∂tv − q · ∇v

)
Q

= 0 for v ∈ C1
c(Q), so that the weak derivative

∂tu+ div f(u) ∈ L2(Q) exists and ∂tu+ div f(u) = 0, and we obtain for smooth test functions v ∈ V∗

(
u0, v(0)

)
Ω
−
(
gin, v

)
I×Γin

= b(u, v) =
(
u,−∂tv − q · ∇v

)
Q

=
(
u,−∂tv − q · ∇v

)
Q
−
(
∂tu+ div f(u), v

)
Q
=
(
u(0), v(0)

)
Ω
−
(
f(u) · n, v

)
I×Γin

,

so that u(0) = u0 in Ω and f(u) · n = gin on I × Γin, i.e., u is also a strong solution.

Next we show uniqueness. Therefore, assume that ũ ∈ L2(Q) is also a weak solution, i.e., b(u− ũ, v) = 0 for v ∈ V∗.
With the same arguments as above, we can show that a solution v∗ ∈ L2(Ω) of the dual problem backward in time

−∂tv
∗ − q · ∇v∗ = u− ũ in Q , v∗(T ) = 0 in Ω , v∗ = 0 on (0, T )× Γout

exists. Then, we have for all for v ∈ V∗

0 = b(u− ũ, v) = b(u− ũ, v∗) + b(u− ũ, v − v∗) =
∥∥u− ũ

∥∥2
Q
+ b(u− ũ, v − v∗) .

Since inf
v∈V∗

∣∣b(u − ũ, v − v∗)
∣∣ = 0, this implies u = ũ. Thus, the weak solution u is unique, and therefore also for the

discrete solutions (uh)h∈H only one limit exists. □

Remark 5.2. The assumptions 1) and 2) in Lem. 5.1 are weighted with |qh ·n|1/2 and, by duality with |qh ·n|−1/2. This
is a consequence of the upwind flux and the corresponding choice of the DG semi-norm, so that the numerical analysis uses
weighted L2 norms [Dörfler et al., 2023, Thm. 2.8] for the traces in space, as it is also used for the boundary semi-norm
in [Ern and Guermond, 2021, Chap. 57.3.2].

Here, the objective is to show that the standard approach used for hyperbolic conservation laws applies to our setting: the
discrete solutions are uniformly bounded, and by consistency of the discretization the weak limit is a weak solution.

Alternatively, the existence of a weak solutions can by shown by the LL∗ approach, as is is proved for our application
class in [Dörfler et al., 2023, Thm. 2.8]. Therefore, one shows that L∗(V∗) ⊂ L2(Q) is surjective, see [Dörfler et al.,
2023, Lem. 2.12] for the wave equation.

Let V ∗ be the closure of V∗ in H(L∗;Q) = {v ∈ L2(Q) : L∗v ∈ L2(Q)} with respect to the graph norm. Then it can be
shown that L∗ : V ∗ −→ L2(Q) is an isomorphism. This is the basis to apply the theory in [Broersen et al., 2018], where
the linear transport equation in space is analyzed; defining q̂ = (1,q)⊤ directly transfers the analysis in space for the DPG
approximation into our space-time setting and provides an alternative for the numerical analysis in a different norm.

Remark 5.3. Explicit time stepping schemes for hyperbolic equations require a CFL condition; nevertheless, for qualitative
estimates it is required that the transport velocity cref and the relation of mesh size and time steps h/△th is well balanced.
This is related with assumption 2) in Lem. 5.1: the constant Cq directly corresponds to the transport velocity, and if
assumption A2) is not valid, the transport velocity cannot be bounded.

Remark 5.4. In applications where the flux is determined by Eqn. (2.7), the flux vector is discretized and approximated
by qh, and the results in Lem. 5.1 depend on uniform bounds for qh. Alternatively, one can assume sufficient regularity
for q, e.g., q ∈ W1,∞(div; Ω) and |q|−1 ∈ L∞(Ω), see [Broersen et al., 2018].

Remark 5.5. The proof of Lem. 5.1 follows the classical Lax equivalence theorem for linear equations: stability and
consistency of numerical approximations imply convergence. For a class of nonlinear conservation laws this is generalized
to K-convergence in [Feireisl et al., 2020].
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12 A space-time DG method for the linear transport equation

5.2. Qualitative convergence estimates in the DG norm

Theorem 5.6. Assume that the solution of (2.6) is sufficiently smooth satisfying u ∈ Hr(Q) with

1 ≤ r ≤ min
n,K

{pn,K , sn,K}+ 1 .

Then, the error for the discrete solution uh ∈ Vh of (4.1) is bounded by∥∥u− uh

∥∥
h,DG

≤ C1h
r−1/2

∥∥Dru
∥∥
Q
+ C2Th

−1/2
∥∥div f(u)− div fh(u)

∥∥
Q

with C1, C2 > 0 depending on the mesh regularity, the polynomial degrees in Vh, and the flux vector.

Proof. By the assumption u ∈ H1(Q), for the solution all jump terms are vanishing, so that by (3.3) and (3.5)

bh(u,wh) =
(
∂tu+ div fh(u), wh

)
Q
+
(
u(0), wh(0)

)
Ω
−
(
f(u) · n, wh

)
I×Γin

=
(
∂tu+ div fh(u), wh

)
Q
−
(
∂tu+ div f(u), wh

)
Q
+
(
u0, wh(0)

)
Ω
−
(
gin, wh

)
I×Γin

=
(
div fh(u)− div f(u), wh

)
Q
+ bh(uh, wh) , wh ∈ Vh , (5.6)

i.e., we have Galerkin orthogonality up to the data error.

By (5.3) we obtain
∥∥wh

∥∥2
h,DG+ ≤ C+

∥∥h−1/2wh

∥∥2
Q
≤ C+c

−1
mrh

−1
∥∥wh

∥∥2
Q

, so that by Lem. 3.2

∥∥wh

∥∥2
Q
≤ 2 bh(wh, dTwh) ≤ 2

∥∥wh

∥∥
h,DG

∥∥dTwh

∥∥
h,DG+ ≤ 2T

∥∥wh

∥∥
h,DG

∥∥wh

∥∥
h,DG+

≤ 2T
∥∥wh

∥∥
h,DG

√
C+c

−1
mrh−1

∥∥wh

∥∥
Q
≤ 2T 2C+c

−1
mrh

−1
∥∥wh

∥∥2
h,DG

+
1

2

∥∥wh

∥∥2
Q
,

i.e.,
∥∥wh

∥∥
Q
≤ C3Th

−1/2
∥∥wh

∥∥
h,DG

with C3 = 2
√
C+c

−1
mr . Thus, the consistency term can be bounded by(

div fh(u)− div f(u), wh

)
Q
≤
∥∥ div fh(u)− div f(u)

∥∥
Q

∥∥wh

∥∥
Q
≤ C3Th

−1/2
∥∥ div fh(u)− div f(u)

∥∥
Q

∥∥wh

∥∥
h,DG

.

Using Thm. 4.2, (5.6) and continuity of the bilinear form bh(·, ·) in the DG norms, we obtain for all vh ∈ Vh

cinf-sup
∥∥uh − vh

∥∥
h,DG

≤ sup
wh∈Vh\{0}

bh(uh − vh, wh)∥∥wh

∥∥
h,DG

= sup
wh∈Vh\{0}

bh(u− vh, wh) +
(
div fh(u)− div f(u), wh

)
Q∥∥wh

∥∥
h,DG

≤
∥∥u− vh

∥∥
h,DG+ + C3Th

−1/2
∥∥div fh(u)− div f(u)

∥∥
Q
. (5.7)

Let vh = ΠCl
h u be a stable quasi-interpolation of Clement-type [Bartels, 2016, Sect. 4.4.2] with

h−1
∥∥u−ΠCl

h u
∥∥
Q
+
∥∥∂t(u−ΠCl

h u
)∥∥

Qh
+
∥∥div f(u)− div f(ΠCl

h u)
∥∥
Qh

≤ CCl
∥∥Du

∥∥
Q
, Du =

(
∂tu
∇u

)
with a constant CCl > 0 depending on the mesh regularity, the polynomial degrees in Vh, and q.

For r ≤ min{p, s}+ 1 the interpolation estimates [Di Pietro and Ern, 2011, Lem. 1.59] yield∥∥u−ΠCl
h u
∥∥
Q
+ h1/2

∥∥u−ΠCl
h u
∥∥
∂Qh

+ h
∥∥∂t(u−ΠCl

h u) + div fh(u−ΠCl
h u)

∥∥
Qh

≤ Cinth
r
∥∥Dru

∥∥
Q

with Cint > 0 depending on the mesh regularity. Then, the result follows from (5.7) by∥∥u− uh

∥∥
h,DG

≤
∥∥u−ΠCl

h u
∥∥
h,DG

+
∥∥uh −ΠCl

h u
∥∥
h,DG

≤
∥∥u−ΠCl

h u
∥∥
h,DG

+ c−1
inf-sup

(∥∥u−ΠCl
h u
∥∥
h,DG+ + C3Th

−1/2
∥∥div fh(u)− div f(u)

∥∥
Q

)
≤ C1h

r−1/2
∥∥Dru

∥∥
Q
+ C2Th

−1/2
∥∥div fh(u)− div f(u)

∥∥
Q
.

□

Remark 5.7. The error analysis in the graph norm
√
∥v∥2Q + ∥∂tv + div f(v)∥2Q is more restrictive with respect to the

regularity assumptions, e.g., O(h) convergence requires for the solution the regularity u ∈ H2(Q), cf. [Dörfler et al., 2016].
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Remark 5.8. If the flux vector q is sufficiently smooth, the consistency term can be estimated by∥∥div fh(u)− div f(u)
∥∥
Q
≤
∥∥divq− divqh

∥∥
∞

∥∥u∥∥
Q
+
∥∥q− qh

∥∥
∞

∥∥∇u
∥∥
Q
.

In general applications, only q ∈ H(div,Ω) can be assumed. Then, the consistency error can be estimated in case of higher
regularity of the solution: if u ∈ L2(0, T ;W

1
r(Ω)) with r > 2, we obtain∥∥div fh(u)− div f(u)

∥∥
Q
≤
∥∥div(q− qh)

∥∥
Ω

∥∥u∥∥
Q
+
∥∥q− qh

∥∥
Lr/(r−1)(Ω;Rd)

∥∥∇u
∥∥
L2(0,T ;Lr(Ω;Rd))

.

Since we use lowest-order Raviart-Thomas approximations of the flux vector, this is limited by O(h), cf. Rem. 4.3.

6. An error indicator of residual type

In case that the solution u is sufficiently smooth and the traces on ∂Qh are well-defined, the error u − uh in the DG
semi-norm takes the form

∣∣u− uh

∣∣
h,DG

=

(
1

2

∥∥u0 − uh(0)
∥∥2
Ω
+

1

2

N−1∑
n=1

∥∥[uh]n
∥∥2
Ω
+

1

2

∥∥u(T )− uh(T )
∥∥2
Ω

(6.1)

+
1

4

∑
K∈Kh

∑
F∈FK∩Ω

∥∥|qh · nK |1/2[uh]K,F

∥∥2
Ih×F

+
1

2

∥∥|qh · n|1/2(u− uh)
∥∥2
Ih×∂Ω

)1/2

.

On the inflow boundary we can estimate
∥∥|qh · n|1/2(u− uh)

∥∥
Ih×Γin

≤
∥∥|qh · n|−1/2fh(u− uh)

∥∥
Ih×Γin

and thus

1

2

∥∥|qh · n|1/2(u− uh)
∥∥2
Ih×Γin

≤
∥∥|qh · n|−1/2(gin − fh(uh) · n)

∥∥2
Ih×Γin

+
∥∥|qh · n|−1/2(f(u)− fh(u)) · n

∥∥2
Ih×Γin

,

and for the DG norm we get∥∥u− uh

∥∥2
h,DG

=
∣∣u− uh

∣∣2
h,DG

+
∥∥h1/2 (∂t(u− uh) + div fh(u− uh))

∥∥2
Qh

(6.2)

≤
∣∣u− uh

∣∣2
h,DG

+ 2
∥∥h1/2 (∂tuh + div fh(uh))

∥∥2
Qh

+ 2
∥∥h1/2 div(f(u)− fh(u))

∥∥2
Qh

.

Up to the error uh − u at final time T and on the outflow boundary in (6.1) and without estimating the approximation
error of the discrete flux in (6.1) and (6.2), this is explicitly evaluated by the residual error indicator

ηres,h =
( ∑

R∈Rh

η2res,R

)1/2
given by the local contributions

η2res,R = η2res,n,K + 2hK

∥∥∂tuh + div fh(uh)
∥∥2
R

+
1

4

∑
F∈FK∩Ω

∥∥|qh · nK |1/2[uh]K,F

∥∥2
Ih×F

+
∥∥|qh · n|−1/2(gin − fh(uh) · n)

∥∥2
Ih×(∂K∩Γin)

for R = (tn−1, tn)×K, n = 1, . . . , N and residuals at tn−1 and tn

η2res,1,K =
1

2

∥∥u0 − uh(0)
∥∥2
K
+

1

4

∥∥[uh]1
∥∥2
K
, R = (0, t1)×K ,

η2res,n,K =
1

4

∥∥[uh]n−1

∥∥2
K
+

1

4

∥∥[uh]n
∥∥2
K
, R = (tn−1, tn)×K , 1 < n < N ,

η2res,N,K =
1

4

∥∥[uh]N−1

∥∥2
K
, R = (tN−1, T )×K .

Lemma 6.1. Let u ∈ L2(Q) be the weak solution of (2.6) and uh ∈ Vh the discrete solution of (4.1).
Then, if u is sufficiently smooth, the error in the DG norm is bounded by∥∥u− uh

∥∥
h,DG

≤
(
η2res,h +

1

2

∥∥(uh(T )− u(T ))
∥∥2
Ω
+

1

2

∥∥|qh · n|1/2(u− uh)
∥∥2
Ih×Γout

+ 2
∥∥h1/2 div(f(u)− fh(u))

∥∥2
Qh

+
∥∥|qh · n|−1/2(f(u)− fh(u)) · n

∥∥2
Ih×Γin

)1/2
.
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14 A space-time DG method for the linear transport equation

7. Numerical experiments

The convergence results are illustrated by two numerical experiments in the domain Ω = (−0.5, 0.5)2 and T = 1.

In the first test we consider a linear flux vector and the smooth solution

u(t,x) =

exp

(
− |x− y(t)|
1/8− |x− y(t)|

)
, |x− y(t)| < 1/8 ,

0 , else,
y(t) = (1/4)

(
cos(2πt)
sin(2πt)

)
, q(x) =

(
−2πx2

2πx1

)
,

cf. Fig. 1. Starting with linear elements p = s = 1, we clearly observe linear convergence in the DG norm which is very
closely approximated by the error indicator. This is compared with results of a p-adaptive strategy, see [Dörfler et al.,
2023][Chap. 4.6] for the algorithmic details. Then, two refinement/derefinement steps improve the order of convergence,
using quadratic and cubic approximations of the smooth solution and only finite volumes where the solution vanishes.

4 5 6 7 8

10−3

10−2

10−1

1

1

1

2

mesh level ℓ with mesh size h = 2−ℓh0

ηres,h uniform refinement∥∥u− uh

∥∥
DG,h

uniform refinement∥∥u− uh

∥∥
DG,h

adaptive refinement 1∥∥u− uh

∥∥
DG,h

adaptive refinement 2

Figure 1. Convergence test for smooth test example.

In the second test we approximate the discontinuous piecewise constant solution of the Riemann problem

u0(x) =

{
1 , x1 + 2x2 + 5/9 < 0 ,

0 , else,
q =

(
2

1/2

)
where the interface cannot be resolved by the mesh, cf. Fig. 2. Since the solution is not in H1(Q), Thm. 5.6 cannot be
applied. Numerically we observe convergence with a rate smaller than 1/2, and adaptivity can reduce only the problem
size for a fixed accuracy but not the order of convergence.

4 5 6 7 8

10−0.8

10−0.6

10−0.4

1

0.4

ηres,h uniform refinement∥∥u− uh

∥∥
DG,h

uniform refinement∥∥u− uh

∥∥
DG,h

adaptive refinement

Figure 2. Convergence test for the Riemann problem.
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8. Hybridization to the space-time skeleton

By (3.2) and (3.4) we obtain for the discrete bilinear form (3.7) the dual representation

bh(vh, wh) = −
(
vh, ∂twh + qh · ∇wh

)
Qh

−
N∑

n=1

(
vn,h(tn), [wh]n

)
Ω
+
∑

K∈Kh

∑
F∈FK

(
fup
K,F (vh) · nK , wh,K

)
Ih×F

For the hybridization we introduce appropriate trace variables in space and time. Therefore, we define the linear mapping
Πup

h : Vh −→ L2(∂Qh ∩Q) onto the space-time skeleton in the interior of the space-time domain by

Πup
h vh =


vn,h(tn) in Ωh for n = 1, . . . , N − 1 ,

vh,K on Ih × F, F ∈ Fout
K ∩ Ω ,

vh,KF
on Ih × F, F ∈ F in

K ∩ Ω ,

and this defines the discrete space V̂h = Πup
h (Vh).

For the discontinuous discrete solution uh = (uh,R)R∈Rh
∈ Vh we define ûh = Πup

h uh. If ûh = Πup
h uh is known, in every

space-time cell R = (tn−1, tn)×K, n = 1, . . . , N the local solutions uh,R ∈ Vh,R can be recovered from the local equations

bh,R(uh,R, wh,R) = −b̂h,R(ûh, wh,R) + ℓh,R(wh,R) , wh,R ∈ Vh,R (8.1)

with

bh,R(vh,R, wh,R) = −
(
vh,R, ∂twh,R + qh · ∇wh,R

)
R
+
(
vh,R(tn), wh,R(tn)

)
K
+
(
fh(vh,R) · nK , wh,R

)
In,h×(F∩Γout)

,

for n > 1

b̂h,R(ûh, wh,R) =−
(
ûh(tn−1), wh,R(tn−1)

)
K
+
(
fh(ûh) · nK , wh,R

)
In,h×(∂K∩Ω)

, ℓh,R(ûh, wh,R) =−
(
gin, wh,R

)
In,h×(F∩Γin)

and for n = 1

b̂h,R(ûh, wh,R) =
(
fh(ûh) · nK , wh,R

)
In,h×(∂K∩Ω)

, ℓh,R(ûh, wh,R) =
(
u0, wh,R(0)

)
Ω
−
(
gin, wh,R

)
In,h×(F∩Γin)

.

Lem. 4.1 transfers to bh,R(·, ·) and Vh,R, so that the local problems (8.1) have a unique solution.

Defining Bh ∈ L(Vh, V
′
h), B̂h ∈ L(V̂h, V

′
h) and ℓh ∈ V ′

h by

⟨Bhvh, wh⟩ =
∑

R∈Rh

bh,R(vh,R, wh,R) , ⟨B̂hv̂h, wh⟩ =
∑

R∈Rh

b̂h,R(v̂h,R, wh,R) , ⟨ℓh, wh⟩ =
∑
R

ℓh,R(wh,R)

yields (Bh + B̂hΠ
up
h )uh = ℓh for the discrete equation (4.1), so that

Bhuh + B̂hûh = ℓh , Πup
h uh = ûh and uh = B−1

h

(
ℓh − B̂hûh

)
.

Lemma 8.1. ûh ∈ V̂h is the unique solution of the sparse linear system in V̂h(
idV̂h

+Πup
h B−1

h B̂h

)
ûh = Πup

h B−1
h ℓh . (8.2)

Proof. By construction we have ûh = Πup
h B−1

h

(
ℓh − B̂hûh

)
, so that ûh solves (8.2). It remains to show uniqueness, i.e.,

that idV̂h
+Πup

h B−1
h B̂h ∈ L(V̂h, V̂h) is injective. Therefore, consider a solution v̂h ∈ V̂h of the homogeneous problem(

idV̂h
+Πup

h B−1
h B̂h

)
v̂h = 0. For vh =−B−1

h B̂hv̂h we get v̂h = Πup
h vh. This yields Bhvh + B̂hΠ

up
h vh = B̂hv̂h− B̂hv̂h = 0

and thus bh(vh, wh) =
∑

R∈Rh

(
bh,R(vh,R, wh,R) + b̂h,R(Π

up
h vh, wh,R)

)
= ⟨Bhvh + B̂hΠ

up
h vh, wh⟩ = 0 for all wh ∈ Vh, so

that vh = 0 by Lem. 4.1. This proves injectivity and, since dim V̂h < ∞ also unique solvability of (8.2). □

Remark 8.2. Here we only introduce a reduction to skeleton degrees of freedom V̂h = Πup
h (Vh) for the upwind DG

method, see also [Bui-Thanh, 2015] for more applications. An extension corresponding to the ideal DPG method yields a
formulation in Vh× V̂h and defines the reduced system in V̂h by exact solutions of the transport equation in the space-time
cells R. Corresponding to the practical DPG method a fine space Vh ⊂ Vh and a smaller subspace V̂h ⊂ Πup

h (Vh) can be
selected [Gopalakrishnan and Qiu, 2014]. Then, the local transport problems are solved very accurately, but the overall
conservation property depends on V̂h. Note that the DPG method yields a symmetric positive definite system for the
skeleton reduction also for hyperbolic problems while the hybridization of the upwind DG method is not symmetric.
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9. Conclusion

We established for the transport equation well-posedness and stability of the space-time DG method with full upwind,
and we showed for solutions in Hr(Q) convergence in the DG norm. This implies for every time step u(tn,h) regularity in
Hr−1/2(Ω) and convergence of order O(hr−1/2) in L2(Ω).

First numerical results show that the error control in the DG norm with the indicator ηh is very efficient in the case of
smooth solutions and is also quite accurate for solutions with low regularity. In the next steps, the efficiency of different
adaptive strategies and a comparison with the hybrid formulation will be considered. In case of smooth solutions, it
is required to extend the convergence analysis to higher-order approximations of the flux vector. In addition we will
investigate how to estimate the remaining term uh(T )− u(T ) in the error control, e.g., by solving the (discrete) adjoint
problem backward in time.

The hybrid formulation of the full upwind DG method for linear transport is closely related to the DPG method since
it ensures weak continuity on the element faces in space and in time. On the other hand, the hybrid reduction is not
symmetric, and the analysis in the mesh-dependent DG norm is different from the analysis with respect to the graph
norm and yields estimates with lower regularity requirements. This relies on the construction of the DG norm which also
provides a bound for the jump terms on the element faces. If a corresponding error analysis including inf-sup stability
with respect to a suitable mesh-dependent norm can be transferred to the general DPG setting remains an open question
which will be investigated in future work.
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