Space-time discontinuous Galerkin Methods
for the linear transport equation
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Let Q c (0,1)? be a simplified configuration intersecting the top earth layers

Application: Transport in porous media

of sand with different permeability x: Q@ — (Kmin, Kmax) C (0, 00).

In this configuration (0, 1)? \ Q are impermeable stones and rocks.

Let Fmp

(0,1) x {1} C 99 be the surface where it is raining,
and let Tpoom = [0, 1] x {0} C 992 be the groundwater level.

First step

2

q: O — R2.

Compute the flux vector

Starting with a pollution density

Second step

uw:Q—R
compute the transport along q

u: (0,T) x 2 — R.



Application: Transport in porous media A\‘(IT

The porous media equation is a Poisson problem for the pressure head p: 0 — R.
m p(x) = 0 for x € I'hottom IS fixed on the Dirichlet boundary I'p = T'yottom
® n(x)-q(x)=—1 forx & e withn = (0,1)7 are the Neumann data
mn(x)-qx)= 0 forx e I\ (Tvotom NI'op) With outer normal n defined a.e.
m q(x) = —k(x)Vp(x) for x € Q is the material law.

In weak form we have

| w607 a0 s dx = — [ Vo) -6

*‘/F po(N(x) - Blx >da+/p<x>v-¢<x>dx

Q

for all smooth test function ¢ € C*(Q;R?) withn- ¢ = 0on Ty = 9Q \ T'p.
For all convex subset K C Q2 we have the balance law

/ n(x) - q(x)da= / gn(x) da.
OK OKNI'y
This implies for all test function ¢ € C'(Q) with ¢» = 0 on Tp or ¢ € C¢(QUTY)

| divaGouee dx =~ [ at)- Vot dx = [ oot da.

N

We have p € H'(Q) withp =00nTp, —V - kVp = 0in ©, and q € H(div, Q).



Application: Transport in porous media A\‘(IT

For given flux vector q: Q — R? and initial pollution density v°: Q@ — R we
compute the transport along q for the pollution density w: (0,7) x @ — R.

Here we assume no pollution inflow on I'iy = {x € 9Q: q(x) - n(x) < 0}.
The conservation property for all convex subsets K C 2 and (t1,t2) C (0,7)

/((tm) u(ty, x dx+/ /Z)K u(t,x) q(x) - n(x)dadt =0

yields, in case that v and q are sufficiently smooth,

/ / (Oru(t,x) +div (u(t,x) q(x))) dtdx = 0.

This implies for all smooth test function v € Cg ([0,7T") x (2UTin))
0= /0 /QU(t,X) ( — Owv(t,x) — q(x) - Vv(t,x)) d(t,x)
+/Q (u(T, x)v(T, x) — u(0,x)v(0,x)) dx +/0 /69 u(t, x) q(x) - n(x)v(t, x) dadt

and thus (in case of no pollution inflow)

/ / (t,x) E%v (t,x) + q(x) - Vv(t,x)) d(t, x) = /ﬂ u’ (x)v(0,x) dx .



Application: Transport in porous media

OonIp.

Owithgq=—kVpinQandp

For given permeability &, solve divq

128 - 183 552 space-time DOFs

Then, for given initial pollution density «°, compute the transport with flux vector q.

The solution with 23 494 656
requires 2 minutes on 8 parallel cores and 40 seconds on 32 cores.



Approximation of the porous media equation A\‘(IT

Karlsruhe Institute of Technology

Let Q ¢ R? be a polygonal Lipschitz domain. For h € H C (0,ho) letQ, = | K
Keky,

be meshes where the elements K C Q, K € K}, are open triangles/tetrahedra.

Let F' € Fk be the faces of the element K, and we set 7, = |J Fk, so that
KeKy,

00, = | Fisthe skeletoninspace, Q = Q, U0Q,, andTp= | F.
FeF, FeF,Nlj,

We use Raviart-Thomas finite elements. Let

Wy = {(ph,qh) S LQ(Q) X Hl(diV7 Q) ph|K € Po(K) forall K € ’Ch and
dnlk € P1(K)d such that nr - qn|r € Po(F) forall F € ]:K} ,

and compute (pn, qr) € W), with n - g5 = gy on Ty solving

/ (m_lqh - ¢p — pr div o — divqhwh> dx = —/ pon - ¢pda

Q T'p

for all (1n, pr) € Wi, with n - ¢, = 0 on T'.

The discretization is inf-sup stable, the solution is uniformly bounded in Lo, so that
a weakly converging subsequence (qh)hEHO with Ho C H and 0 € H, exists with

weak limit q € L2 (Q;R?) and hlélg‘l (an, d)a = (aq, ¢)a for all ¢ € La(;R?).
0



Outline AT

Karlsruhe Institute of Technology

m Define a weak solution w in L, for the linear transport equation
with flux vector q in Ls.

m Define a discontinuous space-time discretization space V;,
which includes piecewise constant approximations in space and time.

m Define a variational approximation in time.

m Evaluate the upwind flux by the exact solution for the transport equation
for a constant flux vector q.

m Define a space-time discontinuous Galerkin discretization with full upwind.

m Establish inf-sup stability with respect to a suitable mesh-dependent DG norm.
Thus, unique discrete approximations wu;, exists and {uy } is uniformly stable.

m Establish consistency of the discrete solutions.
This yields together with stability convergence to the weak solution.

m Construct a residual-type error indicator.
m Investigate numerically the convergence for smooth/non-smooth solutions.



The linear transport equation

T

itute of Technology

Let Q c R? be a bounded domain in space with Lipschitz boundary,

I =(0,T) atimeinterval, and @ = (0,T") x §2 the space-time cylinder.

We aim to compute the transport of a quantity u: [0,7] x @ — R along a given

vector field q: & — R?. The corresponding flux function f is given by f(u) = u q.
m conservation property for all convex subsets K C Q and (¢1,t2) C (0,T)

] (atta) = uttr, ) ax+ [ [ utt.x)ax) - n(x)dade =o.

u initial condition and boundary condition on I'i, = {x € 9Q: q(x) - n(x) < 0}
u=u’ for {0} xQ, f(u) - n=gn for (0,7)x Ti.
If w and q are sufficiently smooth, we have d;u + div f(u) = 0in (0,T) x Q.
Definition

For q € L2(Q;RY), u® € 12(Q), and gin € L2((0,T) x Tin), Tout = 9N\ Tin,
a weak solution u € Ly (Q) of the linear transport equation is defined by

iy
/u(—@tv—q-Vv) d(t,x):/uOU(O)dx—/ / ginvdadt,
Q Q 0 JT

vEV = {vGCl(@): v=00n{T} x QU (0,T) x Lou} .




The weak linear problem A\‘(IT
We construct a discretization for the linear problem to find u € L2(Q) solving
b(u, w) = L(w), we V"
with
T
b(v,w) = m(v,w) +/ a(v(t),w(t))dt
0
and

m(v,w) = — /Q vo:wd(t,x),

a(v(t), w(t)) = - / E(u(t)) - Vuo(t) dx.,

lw) = /uow dx—/ / gin(t)w(t) dadt
Q T

using the notation v(t) = v(t,-) € L2(Q).



The DG finite element space in the space-time cylinder J(IT

For0=to <t <--- <ty =T, we define time intervals I,,,, = (tn—1,t») and
In = (to,t1)U---U(tn-1,tn) C I =(0,T), OIn = {to,t1,...,tn—1,tN}.

Let K, be a mesh so that ), = UKe)Ch K is a decomposition in space into open
cells K C Q c R%. We obtain a decomposition into R = I,,, x K and

N
Qh:thQh:UQn,h: U R, Qn,n = U Inpw X K C Inp x0.
n=1 RER, KeKy
In order to calibrate the accuracy in space and time, we assume
cetOt < h, At = max(t, — th—1), h = maxdiam(K),

where ¢ > 0 is a reference velocity depending on the flux vector q.

The DG discretization in space and time is defined for V3, C V), € H'(Q4).
For vs, € Vy define vy n = vilq, ., € H' (Qn.n).

This implies vy, i (tn—1) € L2(Q) and vy, 1 (tn) € L2(Q2),

but v, (tn) and v,+1,1(t,) May be different.

The DG discretization in space is defined for S, ;, C S, € H'(Q).
For vy, € Sy, define vp, xk = vn|x € Hl(K)

This implies v,k |r € Lo(F) for F' € Fk,

but v, ik |F and v, /| may be different for F' € Fx N Fkr.



Full upwind in time A\‘(IT

For vy, wn, € V), We obtain after integration by parts in all intervals I, , C I,
N

(atvhy wh)Qh = Z ( - (Un,ha atwn,h)Qn N
n=1 ’
+ (Un,h(tn),wn,h(tn))g - (vn,h(tnfl)ywn,h(tnfl))g) .
With [wh]n = wn+1,h(tn) — wn,h(tn), n = 1, ey N —1and [wh]N = waJL(tN) set
N
mp (Vn, wp) = Z (* (Un,h,atwn,h)Q” L (vn,h(tn)7 [wh]n)Q) .
n=1 "

Integrating by parts and defining [vr]o = v1,,(0) yields

N
mp (Vn, wn) = (8ﬂ)h7wh Z ([onln—1, Wn,n(tn-1)),, -

Together, we obtain
mp(Vh, vh) QZth] HQ>0

For test functions w € H' (0, T; L2(€2)) with w(T") = 0 we get consistency, i.e.,

= m(vp, w)

mp(vp, w) = — (vh, 6tw) o .
v 10



The Riemann problem A\‘(IT

Karlsruhe Institute of Technology

We consider the special case q € R? and
constant initial values v, uT e Rforx-n<0andx-n >0withne R n-n=1.
Then we define the piecewise constant function u € L2 (Q) by

_Ju, (x—tq) n<O0,
u(t,x)—{qu’ (x—1tq)-n>0.
We observe for v € C2(Q)
(-0 - Vo), = [ utt <1> (j%jjgj 3) d(t, %)
Q
= / (Wt —u)o(t, x) ((11> . (q—r?) da(t,x) =0,
{(tx)€Q: (x—tq)n=0}

i.e., u is a weak solution of the transport equation.
Fort¢ > 0 and x - n = 0 we obtain

u(t,x) =u~ if q-n>0,
ut,x)=uv" if q-n<0.
This now defines the upwind flux.



Example for the Riemann problem A\‘(IT

The discontinuous piecewise constant solution of the Riemann problem:

1 2
uO(x)—{’ T1+ 222 +5/9<0 q:<2>

0, else

0.5
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A

Full upwind in space

For vy, wi, € S, we observe for the discrete flux £, (vy) = vp qn

(dinh(Uh),wh)Qh: Z (— (fh(vh,K),th,K)K—F Z (fh(vh,K)-nK,wh,K)F).

KekKy, FeFg

For discontinuous functions v, € V},, this is approximated by the upwind flux

an(vn,wp) = E (— (fr(vn, i), Vwn k) ;. + Z (£ (vn) - nK7wth)F) )

KeKp, FeFk
fr(vnk), FeTFR out
’ . . ={F : . >0onF
fl;gF(vh) _ fh(vh KF)’ P e]—"}}\rin with ]:I}:; { € Fk:qn-ng > }
: , ] Fi ={F € Fx:qn-ng <0onF}
0, FeFnnr, k=1

with F = 0K N K and assuming that q;, - nx is constant on F.
Defining [vn]x,F = vn,x, — vn,x ON iNner faces F € F;, N Q, we obtain

Lemma

. 1
an(vn,vn) = 5/ vi, div qp dx + 1 Z Z /([vh}K,F)2 lan - ni|da
o F

KeK, FEFKNQ

|

1
—1—7/ vi|qh-n\da, vp € Sh .
2 Jaq
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A

The full upwind method in space and time
The discrete bilinear form is defined by

b (vn, wn) = mp(vn, wp) + /OT an(vn(t), wp(t))dt, U, Wh € Vh .
We have consistency up to the data error

b (vn, w) = b(vn, w) +/ vn(q —qp) - Vwd(t,x), Vh € Vi, w € V"

Q
and
1 2 1 .
by (vn,vn) = 3 Z | [onln|lg, + 5(’0}1 leQh,’Uh)Q
n=0
f3 3 a2 onlirl], o+ g llannl 2ol 0
FEF,NQ

Lemma
Define dr(t) =T —t. Ifdivqy, > 0, we have

lonlla, + T [lvn(0)|[&, < 2bn(vn,drvr),  vh € Vi



Well-posedness of the DG method A\‘(IT

We assume for the approximation of the flux vector
A1) divqp > 0,
A2) div(veqp) € Vj, for all v, € Vi,
A3) inflow and outflow boundary characterized from q and q;, coincide:
Tn=|J F, Tu= |J F with 7A'= |J 7, ='= |J 7"

FeFn FeFut Kekp Kekp

Lemma

A unique Galerkin approximation uy, € V;, exists solving

bh(uh,’uh) :Z(’Uh), vp € Vi .



Finite element spaces A\‘(IT

Karlsruhe Institute of Technology

Set hx = diam K, hr = diam I, h = max hx, assume hr > csthi, hx > cmrh.

Select polynomial degrees pr = pn,xk > 0, Sk = sn,x > 0in time and space, set

N N
Snn =[] Ponc(K),Sh =Y Sun s Van = [[ Pon @Por s (K), Vi =Y Vi
n=1

Keky, n=1 KekKy,

For a sequence of mesh sizes H = {ho, h1,h2, -} C (0,00) and 0 € H,
let (@), ,, be a shape-regular family of space-time meshes and
let (Vh)hEH the corresponding DG finite element spaces, so that

}}IEI% 1]hil’en;h v — vhHQ =0, v € La(Q).

Depending on the space-time mesh regularity and on qx, Cin, Cr > 0 exists with
A2 (Bsvn + div(vaan))||, < Cinv Hh71/2vh||Qh : < Ctr||h71/2UhHQh .

HQh thHth

If vr, € H'(Q), a stable quasi-interpolation v, = T1'u be of Clement—type exists with
Wt o =T + (10 (w = TTEw) | , + || div £(u) = div £(IT5'w)]|, < Car|[Dul|,

and a constant Cg > 0 depending on the mesh and the polynomial degrees.



a)

Inf-sup stability of the full-upwind method

For all v, € Vi, we define the DG semi-norm and norm

N
1
[onls pe =3 Z [Tonlall,

1
T e mal il g llanm 2ol o
KezchFemeQ

||UhHh,DG :\/|vh|i,DG + th/2 (Orvn + diV(Uhqh))HQQh :

Theorem
A constant cinesup > 0 independent of the mesh size h exists such that

sup Bu(on, wn) > cintsup[vnll, p s vn € Vi

wy, €V, \{0} ||wh||h DG



Convergence of the DG space-time approximation A\‘(IT

Karlsruhe Institute of Technology

The space-time trace estimate

1 1
e T O Y A

and inf-sup stability implies for the discrete solution u;, € V3,

1/2

intsup |un [, pe < 2[4’ llq +2[[lan - nl™gnll,, o, -

Lemma
Assume for the approximation of the flux vector
1) Cin >0 exists s.t. || |qn-n|~"?ginl|,, . < Cin is uniformly bounded for h € #;

1/2

2) Cq > 0 exists such that || |qx - € Ch HuhHIthh forallh € H;

U H I, x0Q,
3) strong convergence in Lo, i.e., }11&11 lan — 4|, = 0.

Then,
a) (un)nen is weakly converging in L2 (Q);

b) the weak limitu € L2(Q) is a weak solution;

c) the weak solution u € L2 (Q) is unique;

d) the weak solution is also a strong solution and d,u + div f(u) € La2(Q).
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Qualitative convergence estimates in the DG norm A\

3 [

Theorem
Assume that the solution u is sufficiently smooth satisfying v € H" (Q) with

1 ST Smi}g{pn,K,Sn,K}‘i‘lo

Then, the error for the discrete solution u, € V}, is bounded by

u— < Ch" M2 |ID" ||, 4 CoTh™Y2|| div £(u) — div £ (u
Q

uh”h,DG ||Q

with C1,C2 > 0 depending on mesh regularity, polynomial degrees in V},, and q.

|w(tn) = wn(tn)||, < tallu — unl], o= O(h™/?) is optimal for u(t,) € H"~/*(Q).
If the flux vector q is sufficiently smooth, the consistency term can be estimated by

| div £1(u) — v £ < [ v — divane| [l + [l - an] 7],

@lq
In general only q € H(div, Q) can be assumed. If u € L2 (0, T; W.(Q)) with r > 2

|| div £4(u) — div f(u HQS || div(a — an H [ HQ

+ Hq qhHL,./(T,,l)(Q;]Rd)HquLz(O,T;LT(Q;Rd)) :



Error control A\‘(IT

The error u — uy, in the DG semi-norm takes the form

[ =, s = (iuw =+ 5 2 el + 5 (D) — (D]

1/2
1 1
t12 2 quh«nK“Q[uh}K,FHihxaKuHqh-ni”%uw)Hihmupwn)

KeKy, FEFgNQ

and for the DG norm we get

S!u +2||h /2 (Orun + div £r(un) HQ

}h DG

o= wnll; pe

+2|[n!2 div(£(u) - £ (w))]]5,, -

Up to the error u;, — u at final time T and on the outflow boundary
and without estimating the consistency error
this is explicitly evaluated by the residual error indicator

1/2
2
Mres,h = Z nrcs,R
ReRy,

20



AT

Tres,k 1S given by the local contributions for R = (tn-1,tn) x K,n=1,...,N

Error control

nrQES,R nres n,K + 2hK Hatuh + div fh uh HR

+'Z‘“qh'r“(‘/[“hlﬁFthxaKmQ'+’“qh'I”71 (gin = fnun) - HfhxaKnnn
1 1
77r2es,1,K = 5”“0 - uh(O)Hi{ + ZH[uhhHi{ , R=(0,t1) x K,
1
n?es,n,K = ZH[uh]”*lui + ZH[uh]”Hi’

1
771r2es,N,K - ZH[UH]N—lHi, R = (tN_1,T) x K.

Lemma

Letu € L2(Q) be the weak solution and uy, € Vi, the discrete solution.
Then, if u is sufficiently smooth, the error in the DG norm is bounded by

R=(th—1,tn) X K, 1<n <N,

1/2(

1 1
lu=unlly s < (e + 51 un (@) = u@)G + 5l - 012wl .,

) 1/2
+2|h? div(f(u) - Ea@)][3, + lan - 0l 2(E@) — £a (@) nll} o)

21



Example: Rotation cone

mpchjijzﬁﬂf>, x -y <L, yit)=

s~ lx—y ()

frrere e el
cos(2mt)
sin(27t)

—27xo

)

Bl

u(t,x) =

0, else, q(x) =
2TxT1

~@- 7., uniform refinement

- |ju— “hHDe,h uniform refinement
B ||u — unl| g, adaptive refinement 1
- - adaptive refinement 2

107"

“'LHDG,;I

1073

22
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Example: Rotation cone A\‘(IT

The adaptive solution with 3303 810 degrees of freedom computes the same
solution as the uniform computation on 524 288 = 4096 x 128 space-time cells and
31703 040 degrees of freedom.

yars
00

solution sliced at times t = 0,0.3,0.6, 1

23
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Example: The Riemann problem

A

Since the Riemann solution is not in H*(Q), the theorem does not apply.

10-04 4 —@-— 7)<, Uniform refinement
B [[u — wp |y, uniform refinement
B ||u — up |, adaptive refinement
107().6 -
0.4
10-9-8 4 1
T T T T
4 5 6 7 8

Dorfler / Wieners: Space-time approximations for linear acoustic, elastic, and electro-magnetic wave equations.
Lecture Notes for the MFO seminar on wave phenomena, Birkhduser 2023

Corallo / Dérfler / Wieners: Space-time discontinuous Galerkin methods for weak solutions

of hyperbolic linear symmetric Friedrichs systems. J. Scientific Computing 2023

Wieners: Adaptive parallel space-time discontinuous Galerkin Methods for the linear transport equation.

Computers & Mathematics with Applications 2023
24


http://www.math.kit.edu/ianm3/seite/mfoseminar/en
http://www.math.kit.edu/ianm3/seite/mfoseminar/en
http://www.math.kit.edu/user/~wieners/SpaceTimeDG2022.pdf
http://www.math.kit.edu/user/~wieners/SpaceTimeDG2022.pdf
http://www.math.kit.edu/user/~wieners/SpaceTimeTransport.pdf
http://www.math.kit.edu/user/~wieners/SpaceTimeTransport.pdf

